Chen Huang

🗹 chen.huang23@imperial.ac.uk 🎧 chenx820.github.io 🛅 chen-huang-820x

EDUCATION

- Imperial College London Master of Science in Physics with Extended Research
- Huazhong University of Science and Technology (HUST) Bachelor of Science in Physics; GPA: 89.5/100 (top 5%)

RESEARCH EXPERIENCE

- Controlled Quantum Dynamics Group, Imperial College London Research Assistant, supervised by Prof. Dr. Myungshik Kim & Dr. John Michniewicz Charge Noise in Semiconductor Qubits for Quantum Computing (Master's Thesis)
 - Developed Python packages to standardize communication with experimental instruments, adopted across the lab by all members.
 - Calibrated electronic instruments to ensure the precision and accuracy of experimental measurements.
 - Characterized charge transport in silicon-based quantum dots across different device architectures and temperatures.
 - Applied machine learning to extract charge noise characteristics from large datasets and built predictive models to improve qubit fidelity.

Full-Stack Categorization and Optimization of Quantum Computing Systems

- Collaborated with hardware and software researchers to analyze global quantum computing developments and define future research directions.
- Categorized quantum benchmarks by routing strategy and designed chip architectures for semiconductor exchange-only qubits tailored to specific algorithms (e.g., QAOA).
- Quantum Operating System Group, Beijing Academy of Quantum Information Sciences (BAQIS) Beijing, CN Research Intern (Remote), supervised by Dr. Jingbo Wang May 2024 – Present

Quantum Compilation with Neutral Atoms

- Designed a novel zoned architecture for neutral atom systems to enhance scalability and support parallel operations.
- Developed a Python-based compiler optimizing qubit placement and routing via ASAP scheduling and nearest-neighbor algorithms, achieving a $1.38 \times$ fidelity improvement and $100 \times$ speed-up on 100-qubit circuits compared to state-of-the-art methods.
- Built a compiler for dual-species atom arrays leveraging species-specific advantages for qubit encoding and interaction, which is essential for the implementation of quantum error correction in neutral atom platforms.
- Explored the compilation strategies for quantum error correction in neutral atom platforms.

• Institute for Quantum Computing, Baidu Research

Research Intern, supervised by Dr. Jingbo Wang

Automated Calibration of Experimental Parameters in Trapped-Ion Systems

- Designed a calibration framework for trapped-ion systems enabling precise measurement of phonon frequencies ω_k and Lamb-Dicke parameters η_{ik} .
- Developed Python-based automation tools that reduced manual workload and improved parameter precision.

International Joint Lab on Quantum Sensing and Quantum Metrology, HUST

Undergraduate Researcher, supervised by Prof. Dr. Jianming Cai

Nanoscale Detection of Ions Using a Spin Quantum Sensor (Bachelor's Thesis)

- Solved the Poisson-Nernst-Planck equation in MATLAB to model electrostatic potential and ion distribution in a surface forces apparatus (SFA).
- Developed a 2D axisymmetric model of the SFA cavity and performed finite element simulations in COMSOL.
- Investigated ion dynamics under AC voltages in a simplified 1D model and correlated results with NV-based quantum sensing schemes.

Measurements of Entangled Photonic Qubits

- Conducted experiments on polarization-entangled photons generated via SPDC in BBO crystals, achieving high concurrence verified by quantum state tomography.
- Reconstructed density matrices using QuTiP and demonstrated Bell inequality violations experimentally.

SKILLS

- Experimental: Semiconductor Quantum Device Characterization, Dilution Refrigerators, Wire Bonding
- Programming and Software: Python (Qiskit, QuTiP), MATLAB, ETFX, Mathematica
- Languages: Mandarin (Native), English (Fluent, TOEFL 100/120)

PUBLICATIONS

• C. Huang, X. Zhao, H. Xu, W. Zhuang, M.-J. Hu, D. E. Liu, and J. Wang, "ZAP: Zoned Architecture and Parallelizable Compiler for Field Programmable Atom Array," arXiv preprint arXiv:2411.14037, 2024.

London, UK Sep. 2023 - Sep. 2025 (Expected) Wuhan, CN Sep. 2018 - Jun. 2022

Wuhan, CN

Apr. 2019 – Dec. 2022

London, UK Jun. 2024 – Present

Beijing, CN

Mar. 2023 – Sep. 2023

PATENTS

- J. Wang, C. Huang, X. Zhao, H. Xu and M.-J. Hu, "Quantum computing method and device based on partition architecture," *Chinese Patent CN120181251*, Filed 2025.
- C. Huang and J. Wang, "Ion trap chip parameter correction method and device, electronic equipment and medium," *Chinese Patent CN117454997*, Granted 2025.
- J. Wang and **C. Huang**, "Ion trap chip parameter determining method and device, electronic equipment and medium," *Chinese Patent CN117371547*, Granted 2024.
- J. Wang and **C. Huang**, "Ion trap chip parameter calibration method and device, electronic equipment and medium," *Chinese Patent CN117494829*, Granted 2024.

Awards and Honors

- China National Scholarship, Ministry of Education of P. R. China, 2019 (The highest honor for university students in China)
- Outstanding Undergraduates in Term of Academic Performance, HUST, 2019 (The greatest honor for undergraduates at HUST, top 1%)
- Yan Ji-Ci Scholarship, Institute of Physics, Chinese Academy of Sciences, 2020
- UCAS Scholarship, University of Chinese Academy of Sciences, 2020
- Mitacs Globalink Research Internship Scholarship, Mitacs, Canada, 2021
- Outstanding Graduate, HUST, 2022
- Outstanding Intern, Institute for Quantum Computing, Baidu Research, 2023

LEADERSHIP

• HerSTEM Co-founder London, UK Mar. 2025 – present

- Organized events supporting women in STEM, including workshops, seminars, and outreach activities.
- Developed a website and WeChat mini-program to facilitate community engagement and discussion.

• Innovative Base of Physics Experiments (IBPE), HUST

President

- Wuhan, CN May 2019 – Jul. 2020
- Led the annual academic congress and coordinated seminars and workshops on *Advanced Algebra*, *Quantum Mechanics*, *Quantum Computing*, etc.
- \circ Mentored first-year student reading groups on *The Feynman Lectures on Physics*.
- Founded IBPE Review Letters to document and share members' research findings.