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1 Classical Mechanics - 20%

1.1 Kinematics
1.1.1 Linear Motion

The basic kinematic equations of motion under constaant acceleration a

v =g+ at (1.1)
2 _ 2
v° = v + 2a(z — zo) (1.2)
1
x —x9 = vot + iat2 (1.3)
1.1.2 Circular Motion
Centripetal acceleration
2
v
= = 14
a=-—_—=uwr (1.4)
Angular velocity
v
= - 1.5
w=" (15)

1.2 Newton’s Laws
1.2.1 Newton’s Law of Motion

1. An object at rest stays at rest unless acted on by an outside force.
2. F=ma

3. Every action has an equal and opposite reaction Fap = —Fpa

1.2.2 Momentum

p=mv (1.6)
Example 1: Collisions
e Elastic Collision
M1V + Mmava = m1vy + mavy (1.7)
1 1 1 1
ile% + §m2v§ = §m1(v’1)2 + img(vé)Q (1.8)

e Inelastic Collision: Collision in which the kinetic energy of the system is not conserved.

e Completely Inelastic Collision: Collision in which both the particales stick together after the

collision.
myvy + mave = (mg + ma)v’ (1.9)
Example 2: Rocket Motion

(m+dm)v = (v+ dv)m + Vdm (1.10)
mdv + (V —v)dm =0 (1.11)

dv dm
— —_— = 1.12
my +u i 0 (1.12)

u represents the speed of the rocket’s exhaust relative to the rocket.



1.2.3 Impulse

ta
Ap =J= / Fdt = Favg(tg — tl)

t1

1.3 Work & Energy
1.3.1 Kinetic Energy

1.3.2 The Work-Energy Theorem

The net work done is given by

1.3.3 Work

1.3.4 Potential Energy

Example: Spring

Potential energy of a spring

1.3.5 Hooke’s Law

F=—kx
where k is a constant.
e Parallel
kot = k1 + ko
e Series
L1t
kot k1 ko

1.4 Oscillatory Motion
1.4.1 Simple Harmonic Motion
F4+wlr=0
And the equation of simple harmonic motion is
x(t) = Asin(wt + )

e Spring
mi +kx =0

|k m
w m T k

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)



e Pendulum

mlf +mgh = 0 (1.27)
\/5 7= o | (1.28)
w=4/= =2my [ — .
l g
¢ Compound Pendulum )
10+ mgld =0 (1.29)
mgl 1
=1/ — T=2m|— 1.
w 7 ™ mgl (1.30)

1.4.2 Total Energy of an Oscillating System

1 1 1
E=KE.+PE.= §m5c2 + 5“2 = 51@42 (1.31)

1.4.3 Damped Harmonic Motion
Fy=—-bv (1.32)

where b os the damping coefficient. The equation of motion for a damped oscillating system becomes

b k
P —i+—z=0 (1.33)
m m
Solving this we get
x = Ae Plsin(W't + 6) (1.34)
where b
% 1.35
f=on (1.35)
k b2
1.4.4 Driven Oscillation
i+ 2Bi +wiz = Acoswt (1.37)

The amplitude D of an undamped oscillator of natural frequency wp subject to a driving force at frequency
w is proportional as follows:

Do iwz‘ (1.38)
e Free oscillation w? = k/m
e Damped oscillation
— overdamping
— critical damping
— underdamping w'* = wi — 32
e Driven oscillation w% = w? — 23?
1.4.5 Small Oscillations
Vi) = V(ze) + %k‘(x —2)? (1.39)
where a2V (x)
k= [ g L_me >0 (1.40)



1.5 Rotational Motion about a Fixed Axis
1.5.1 Moment of Inertia

I= /erm (1.41)
parallel axis theorem
I = Iy +md? (1.42)
Moments of inertia about center of mass
e Rod %MF
e Disc %MR2
e Sphere %MR2
1.5.2 Kinetic Energy in Rolling
1 1 1
Krot = §Icontactw2 = 5 (Icm + mdz) w2 - ijcmWQ + 57’)?,1)2 (143)
1.5.3 Angular Momentum
L=rxp=1Iw (1.44)
1.5.4 Torque
dL
Example: Roll Down without Slipping
Equations of motion
mgsinf — f = ma (1.46)
fR=1I« (1.47)
a= Ra (1.48)
Conservation of energy
1 1
mgh = §mv2 + §Iw2 (1.49)
v=wR (1.50)
1.5.5 Matrix Transformations
cosf sinf 0
R=|—sinf cosf 0O (1.51)
0 0 1
1.6 Dynamics of Systems of Particles
Position vector of a system of particles
R — [uritmars b MNTN (1.52)
M
Velocity vector of a system of particle
dR mivi +MmaVy + -+ +MmyVy
V= —— = 1.53
dt M ( )
Acceleration vector of a system of particle
A=W _maitmeas + - 4 myay (1.54)

dt M



1.7 Central Forces and Celestial Mechanics

1.7.1 Newton’s Law of Universal Gravitation
GM
F=-— ( Qm) 7
r

1.7.2 Potential Energy of a Gravitational Force
GMm

r

Vir)=

1.7.3 Escape Speed and Orbits

The energy of an orbiting body is

1 GM
E:T+V:§mv2— o
r

The escape speed becomes

Solving for ves. we find

1.7.4 Kepler’s Laws

1. The orbit of every planet is an ellipse with the sun at a focus.

2. A line joining a planet and the sun sweeps out equal areas during equal intervals of time.

(1.55)

(1.56)

(1.57)

(1.58)

(1.59)

3. The square of the orbital period is directly proportional to the cube of the semi-major axis of its orbit.

T? x R?
1.7.5 Types of Orbits
e Circular Orbit £ = V;,
2 GMm
m— =
r 72
The orbital velocity is
GM
v=1—
r
e Elliptic Orbit V,;, < E <0
e Parabolic Orbit £ =0
2GM
U = Vesc =

r

e Hyperbolic Orbit £ >0

1.8 Fluid Dynamics
1.8.1 Buoyant Force

(1.60)

(1.61)

(1.62)

(1.63)

When an object is fully or partially immersed, the buoyant force is equal to the weight of fluid displaced.

1.8.2 Equation of Continuity

pvA = constant

(1.64)



1.8.3 Bernoulli’s Equation

1
P+ ipfu2 + pgh = constant (1.65)

1.9 Non-inertial Reference Frames

Coriolis’ force
Fc=—-2mwxv (1.66)

Objects deflect to the right in the Northern Hemisphere and deflect to the left in the Southern Hemisphere,
because of the earth’s rotation.

1.10 Lagrangian Mechanics
1.10.1 Lagrange’s Function

The Lagranagian of a particle described by the polar coordinates r and 6 is
1 2 242
£=§m<r +r9)—V (1.68)
The action S is defined as
S = / Ldt (1.69)
1.10.2 Euler-Lagrange Equation
d /0L oL
— (=) -Z==9 1.70
dt (C”d) dq (1.70)
The conjugate momentum p is defined as
oL
== 1.71
P= 9 (1.71)
1.10.3 Hamiltonian
The Hamiltonian is defined as
H(g,p,t) =Y pidi — L (1.72)
The Hamiltonian equations of motion are
OH OH OH oL
'i: .i:_ _— = —— 1.73
" o, b= "0 ot ot (1.73)

1.11 Conservation Theorem

e Conservation of Linear Momentum: The component of linear momentum in a direction in which

the forces vanishes is constant in time.
p=F=0 (1.74)

If the generalized coordinate g; is cyclic, then the corresponding generalized momentum component p;
to be a constant of motion. or

, = — = constant 1.75
e Conservation of Angular Momentum: The angular momentum of a particle of a particle subject

to no torque is constant.
L=rxp (1.76)

. d
L= (xp)=(Exp)+Exp)=rxp=rxF=7=0 (1.77)

10



e Conservation of Energy: The total energy of a particle in a conservative field is a constant in time.
F=-VU (1.78)
The Lagrangian must be independent of time and the potential energy must independent of velocities.

H:Zpi%‘—£=2T—£:T+V=E:constant (1.79)

11



2 Eletromagnetism - 18%

2.1 Electrostatics
2.1.1 Cooulomb’s Law

1
-1 9, (2.1)
dmeg T
where gq is the permitivity of free space, where
g0 =8.85 x 10712 C°N"'m—2 (2.2)
2.1.2 The Electric Field
The electric field of a point charge
1 Q.
= = 2.3
4meg r2 g (2:3)
The electric field of a continuous distribute charge
1 r
E= —d 2.4
4meg / r2 q (2.4)

2.1.3 Gauss’ Law

The electric field through aa surface is

@:%d@:&lgE'dA (2.5)

The electric flux through a closed surface encloses a net charge

E-dA = Qene (2.6)
€0
e Electric Field due to a line of charge
h
& =F 2rrh = Al (2.7)
€0
A
E = 2.8
2megr (2:8)
e Electric Field in a solid non-conducting sphere
Q
P = T 29)
3
4.3 3
_ o Pr3TT Qr
Qr
= Ireo I3 (2.11)
2.1.4 Electric Potential
b
V(b) —V(a) = f/ E-dl (2.12)
E=-VV (2.13)
2.2 Currents and DC Circuits
2.2.1 Current
d
=9 (2.14)



2.2.2 Current Density

I://J-dA (2.15)

Current density of moving charges is

J =ncqv (2.16)
2.2.3 Resistance and Ohm’s Law
v
R= T (2.17)
2.2.4 Resistivity and Conductivity
R = p% (2.18)

where p is called resistivity. The Ohm’s law can be written as
J=0E (2.19)

where o is conductivity which can be expressed as

1
oc=- 2.20
5 (2.20)
2.2.5 Power
P=VI (2.21)

2.3 Magnetic Fields in Free Space
2.3.1 The Biot-Savart Law

A steady current refers to a continuous flow that has been going on forever, without change and without
charge piling up anywhere, which means
V-J=0 (2.22)

The magnetic field of a steady line current is given by the Biot-Savart law:

Cpel [dAlxE

B = i 3 (2.23)

2.3.2 Ampere’s Law
yﬁB -dl = polene = po /J -dA (2.24)
V x B = pugd (2.25)

where g is called the permeability of free space.
po = 4m x 1077 NA~2 (2.26)
2.4 Lorentz Force
The magnetic force in a charge ), moving with velocity v in a magnetic field B, is
Fiag = q(v X B) (2.27)

This is known as Lorentz force law. In the presence of both electric and magnetic fields, the net force on @
would be
F=¢E+vxB) (2.28)

13



2.5 Maxwell’s Equations and their Applications

1: B-dA
e fpa- ol

2.5.1 Faraday’s Law

2.5.2 Maxwell’s Equations
Integral Form

e Gauss’ Law for Electric Fields

$Baa-2
€0
%B'dA:()

d

e Gauss’ Law for Magnetic Fields

¢ Ampere’s Law

e Faraday’s Law

Differential Form

e Gauss’ Law for Electric Fields

v.E="
€0

e Gauss’ Law for Magnetic Fields
V-B=0

e Ampere’s Law

OE
V x B = puogJ +M050§

e Faraday’s Law
0B

2.6 Electromagnetic Waves

2.6.1 Speed of Propagation of a EM Wave

2.6.3 Energy Density of an EM Wave

1 1

:fE D+ BHf—EQ — B2
210

2.6.4 Poynting’s Vector
S=ExH

14

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)



2.7 Magnetic and Electric Fields in Matter

2.7.1 Polarization and Magnetization

B B
D =¢E+P = KeoE H=— - -M==—
Ho H
Displacement current
I — oD
P o
2.7.2 Boundary Conditions
ﬁ'(Dg—Dl):Jf le(EQ—El):O
fl-(BQ—B1>:O le(HQ—Hl):Oéf
fl-(Pg—Pl)Z—Up ﬁX(Mg—MﬁZO&]M
2.8 AC Circuits
Impedance:
e Resistors: Xz =R
e Capacitors: X¢ = 1/wC
e Inductors: X; = wL
2.8.1 RC Circuits
Q
E=IR+ =
ile,

The voltage of a capacitor follows an exponential decay

V(t) = Vi exp (-th>

2.8.2 RL Circuits

where 7, = L/R, which means the time to fall to 1/e of its original value.

2.8.3 RLC Circuits
Z = R+ j(X - Xc)

(2.43)

(2.44)

(2.45)
(2.46)
(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

The current will be maximized when the inductive and capacitive reactances are equal in magnitude but

cancel each other out due to being 180° out of phase.

1 1
wl = — = W= —

wC VLC
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2.9 Electronic Elements
2.9.1 Resistors

The voltage V across a resister with resistance R and current [ is given by
V=IR

Given an tube of length L, across sectional area A, and resistivity p the resistance is given by

L
2.9.2 Capacitors

The capacitance C of a capacitor with charge @) and potential V' is given by

_Q
“=v

The energy stored by a capacitor is given by

_ dQ_Q2_1 2 1

Consider a parallel plate capacitor

v o

e

Thus 4
3

C=7

The capacitance of a combination of n capacitors is given by

e Capacitors in series
n

1 1
Coq 2

i=1 ¢

e Capacitors in parallel

Cog = f:oi
i=1

2.9.3 Inductors

The inductance

®p  Nop
L_ _—
I I
drl
g=-1C
det

The energy stored by a inductor is given by

1
/(—5I)dt = —L/IdI = §LP
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(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)



3 Optics & Wave Phonomena - 9%

3.1 Wave Properties
0% (x,t) 2 0% (z,t)

o2 2 (3.1)
1

V= — 3.2
N (3.2)

Phase and group velocity are given by

w dw
Up = E Vg = @ (33)
3.2 Superposition
b(,t) =Y il t) (34)
2

I(z,t) = [Y(@, )] = > i, 1) (3.5)

3.3 The Propagation of Wave
3.3.1 Rayleigh Scattering
When scatter invloving particles smaller than a wavelength, the intensity of the scattering light was propor-

tional to 1/A%.

3.3.2 Reflection

0; =0, (3.6)
3.3.3 Refraction
Snell’s law
n; sin 0; = ny; sin 0, (3.7)
. n
0. = — 3.8
sin - (3.8)

where 6. is the critical angle.

3.4 Interference
3.4.1 Young’s Double Slit Experiment
The maximum positions in Young’s double slit experiment are given by
dsin® = mA (3.9)
While the minima are given by
dsinf = <m + ;) A (3.10)
Alternatively using small angles it is easy enough to show that the angular positions of the peaks are

mA

O = 7

(3.11)
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3.4.2 Rayleigh Criterion

The resolving power of a telescope is

A
Or = 1.225
where D is the diameter of the aperture.
3.4.3 Michelson’s Interferometer
2L
AN = —
A

3.4.4 Newton’s Rings

3.4.5 Thin films

ni

n2

ns

e If ny <ng <ngorny >ng >ns

e If ny < ny,nz or ng > ny,ns

3.5 Diffraction
3.5.1 Single Slit Diffraction

The angle at which maxima occur is given by

1
asinf = (m—i— 2) A

The angle in which minima occur is given by

asinf = mA

3.5.2 Diffraction Grating

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

dsinf) = m\
where d is the spacing between the slits. If instead the question gives the number of slits (/V) per unit length
(L) then

v sinf = mA
3.5.3 Bragg Diffraction

2dsin 0 = mA

18
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3.6 Geometrical Optics
3.6.1 Images

Choose the convention that object distances are positive quantities and image distances are negative quan-
tities.

object m image
e Spherical mirror
! + t_! (3.22)
p i f '
e Spherically refracting surface
M n2_Ne7m (3.23)
p i r

where 7 is the radius of curvature of the surface. The focal length
1
= 5" (3.24)

e Thin lens

111 (n_1)<1_1> (3.25)

f p i rLo T2
where 1 is the radius of curvature of the lens surface closest to the light source and rs is the radius of
curvature of the lens surface fatherest from the light source.
Sign convention: the radius curvature is positive if the center of spherical surface lies to the right of
the lens.

3.7 Polarization
Unpolarized light that went through a linear polarizer has its intensity reduced by a factor of two
1
I1==1I (3.26)
2
Linearly polarized light entering a second linear polarizer has an intensity distribution given by Malus’s law
I=1Iycos?6 (3.27)
where 6 is the angle between the initial polarication axis and the polarization axis of the second polarizer.

3.8 Non-Relativistic Doppler Effect

The non-relativistic doppler shift is dependent on whether the source (s) or the detector (D) is moving, the

equation is
vt
fo = ( D) fs (3.28)

v+ Us

e v is the propagation speed of waves in the medium,;

e vp is the speed of the detictor relative to the medium, added to v if the detector is moving towards the
source, subtracted if the detector is moving away from the source;

e v, is the speed of the source relative to the medium, added to v if the source is moving away from the
detector, subtracted if the source is moving towards the detector.
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4 Thermodynamics & Statistical Mechanics - 10%

4.1 Laws of Thermodynamics

e The zeroth law: Two systems, each separately in thermal equilibrium with a third, are in equilibrium
with each other.

e The first law: dU = dQ + dW = SdT — pdV, where dU is the internal energy of the system, dQ is
the energy added to the system and dW is the work done on the system.

e The second law: dS >0
e The third law: lim S(T) =0
T—0

4.2 Thermodynamic Processes

e Isothermal Process: Process which occurs at a constant temperature, AT = 0.

dQ = —aW = pdv’ (4.1)

e Isobaric Process: Process which occurs at a constant pressure.
e Adiabatic Process: Process which occurs with no energy transferred as heat, AQ = 0.
dU = aw = CydTl = —pdV (4.2)

For an ideal gas we have C, = Cy +nR

v = % =1+ % (4.3)
hence
TV~ = constant (4.4)
p'~7T7 = constant (4.5)
pV7 = constant (4.6)

e Isochoric Process: Process which occurs at a constant volume.

4.2.1 Carnot Engine

W - c TC

Qn Qn Ty
4.2.2 Joule Expansion

bi T

Vo

Since the system is isolated from its surroundings, AU = 0. Hence AT =0

FaQ Fpdv Vi dv
S /l T /l T nR/Vi v nRIn (4.8)

4.3 Equation of State
4.3.1 Ideal Gases
pV =nRT (4.9)
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4.3.2 van der Waals Gas

<p + ;2> (Vin — b) = RT (4.10)

m

4.4 Kinetic Theory
4.4.1 The Maxwell-Boltzmann Distribution

e The velocity distribution

<UJC> = /OO Uwg(vac>de =0 (4.11)

—o0
(lva]) = /OOO v29(vg)dvg = \/T (4.12)
(v3) = /oo v2g9(ve)dv, = ]@WT (4.13)

e The speed distribution
(v) = /000 vf(v)dv = Siif (4.14)
Umax = rii a (4.15)
Vrms = v/ (V%) = SkaT (4.16)

4.4.2 The Mean Free Path
A= ! L (4.17)

V2no - V2rd2n

where o is the cross section, d is the diameter of the molecule and n is the number density of the gas.

4.5 Ensembles

e The microcanonical ensemble (N,V, E): an ensemble of systems that each have the same fixed
energy.

e The canonical ensemble (N,V,T): an ensemble of systems, each of which can exchange its energy
with a large reservoir of heat. This fixes the temperature T of the system.

e The grand canonical ensemble (u, V,T): an ensemble of systems, each of which can exchange both
energy and particles with a large reservoir. This fixes the temperature T and the chemical potential p
of the system.

4.6 Statistical Concepts and Calculation of Thermodynamic Properties
4.6.1 Probability Distribution

¢ Maxwell-Boltzmann distribution 1

e Bose-Einstein distribution

1
_ 7[3”7‘(57‘7;”) .
Z, = ; e = e (4.19)

mZ=m[[z =Wz =-3 [1 - 6_5(57‘_“)} (4.20)
I T T
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10 1

T T

The average number of particles in the state |r) is

1

() = o= —1 (4.22)

e Fermi-Dirac distribution
Pauli exlusion principle shows that fermions cannot sit in the same state, each state can either be
empty or simply occupied, so that {ns} = {0,1}

Zv" — Z 6*5nr(5r*#) =1+ e*ﬂ(sr*t“) (423)
n,=0,1

mZ=m[[Z =Wz =Y {1 + e*mar*#)} (4.24)
10 1
N=g5,m%= Z Bl 11 Z:<n’"> (4.25)
The average number of particles in the state |r) is

1
eBler—n) 11

(n,) = (4.26)

4.6.2 Equipartition

If the energy of a classical system is the sum of n quadratic modes, and that system is in contact with a heat
reservoir at temperature 7', the mean energy of the system is given by n x %kBT.

e Monatomic gas with only translation: 3/2kgT (3 translational degrees of freedom)

e Diatomic gas with translation and rotation: 5/2kgT (3 translational and 2 rotational degrees of
freedom)

e Diatomic gas with transition, rotation and vibration: 7/2kgT (3 translational, 2 rotational and 2
vibration degrees of freedom)

4.6.3 The Partition Function
Steps to solving statistical mechanics problems:
1. Write down the partition function Z

Z=> " (4.27)

2. Go through some standard procedures to obtain the functions of state you want from Z.

e~ PE:
P=— (4.28)
e Internal energy U
dinZ
U= E;P,=kgT? 4.29
2R = kT gy (429
e Entropy S
U
Sz—szi:PilnPi=T+kBInZ (4.30)
e Helmholtz function F =U - TS
F=—kgTlnZ (4.31)
Z =e PP (4.32)
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4.6.4 Combining Partition Function

e If the N particles are distinguishable

Zn = (Z)N (4.33)
e If the N particles are indistinguishable
v (4.34)
N =N .
4.6.5 Thermodynamic Potentials
e Internal energy U
dU = SdT — pdV + pudN (4.35)
e Helmholtz free energy F=U - TS
dF = -TdS — pdV + udN (4.36)
e Enthalpy H =U +pV
dU = SdT + Vdp + pdN (4.37)
e Gibbs free energy G =U — TS + pV
dU = -TdS + Vdp + pdN (4.38)
4.6.6 The Heat Capacity
e Classical gases
0Q ou
_(Z=) (22 4.39
o= (5), = (57), (39
i), (), |(v), 7] (57)
cz( =) +|lz5) +»|(5= (4.40)
P oT » ar /., ov ), oT »
For an ideal gas
3 5 C, 5

e Phonons

— The Einstein model assumes that all vibrational modes of the solid have the same frequency

WEg.
2

xe®
where x = O /T and O = hwg/kp.
* AsT — 0, x — oo and C — 3Rx%e™7.
x* AsT — oo, x — 0 and C — 3R.

— The Debye model assumes a distribution of frequencies with an upper frequency limit wp.

D 4 zd
c=2k B (4.43)
Tp Jo (e —1)
where z = hfw and zp = hfwp.

3
*AsT—>O,x—>ooandC—>12”T43<@l).
D

* AsT — 0o, z — 0 and C — 3R.
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4.6.7 Entropy

Entropy is defined as

0
S=kglnQ) = a—T(kBTan) (4.44)
dQrev
ds = T (4.45)
so that
B ereV

AS = S(B) — S(A) = /A a (4.46)

and S is a function of state. For an adiabatic process (a reversible adiathermal process) we have that

dQrey = 0 (4.47)

Hence an adiabatic process involves no change in entropy (the process is also called isentropic).
Temperature an be defined in terms of entropy

1 s
r= (o)., -

4.7 Phase Transition

e First-order transition

e Second-order transition

4.7.1 Latent Heat
L= A(Qrev = TC(SQ - Sl) (449)

4.7.2 Phase Diagrams

e The critical point: point at which there is no distinction between liquid and vapour.
e The triple point: the one value of T' and p at which all three phases coexist.

e Criticle isotherm: an isothermal line on a PV diagram which just touches a liquid-gas boundary.
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5 Quantum Mechanics - 12%

5.1 Fundamental Concepts
5.1.1 History

1. Plank energy quantization: E = hv

2. Einstein quantum light assumption: £ = hw, p = hk
3. Bohr quantization: L = nh
4

. de Broglie matter wave: F = hv = hiw, p = h/\

5.1.2 Wave Function
1. ¢(x) is always continuous.

2. dyp(z)/dx is continuous except at points where the potential is infinite.

3. [|¥(x)]*dz =1
5.1.3 Probability Current Density
Z.h * *
J =5 - (WVY" = V)
m

5.2 Schrodinger Equation

Hy = Ey

The time dependent Schrodinger’s equation is

h? 0% (x,t) o (x,t)

_— x,t) =ih ’

2m 8:1)2 + V(Z)¢<£v ) t 8t

The time independent schrodinger’s equation is
h? A% (x)
T dg? + V(x)p(x) = Ey(x)

where

P(x,t) = P(x)e Ent/h

5.2.1 Infinite Square Wells

Vi) = 0 forO0<z<a
00 for |x| > a
In the regine (0, a), we get
R? d2y
Y _E
2m dz? v
This differential is of the form
&y +E*p) =0
da? N
where
2mE
k =
h
The wave function
2
ale) =2 (22)
a a
The energy eigenvalues are
27T27:L2
En =
2ma?



5.2.2 Harmonic Oscillators

1
Viz) = imw2m2 (5.12)
The energies of the harmonic oscillator are
1
E, = <n+ 2) hw (5.13)
The ground state of the harmonic oscillator is
2\ /4
o = (5> oB202/2 (5.14)
T
where § = y/mw/h.
5.2.3 Finite Square Well
-V for 0
V(z) = 0 orU<zxz<a (5.15)
0 for |x| > a
The wave function
Ae"® forz <0
¥(x) = { Bceoskx for0<z<a (5.16)
Ce™H forz >a
5.2.4 Hydrogenic Atoms
Vnim (1) = Ryt (r)Yim (0, ¢) (5.17)
2
Me Ze?
B = _ 5.18
" 2n? <47rf30h) (5.18)
5.3 Spin
The Pauli spin matrices are
0 1 0 —1
Oy = <1 0) oy = <Z 0) o, = ( (5.19)
The spin operator is given by
h
S = 57 (5.20)
[Sz,Sy| = ihS. [Sy,S.] = ihS, [S., Sz] = ihS, (5.21)
5.4 Angular Momentum
L = I(1 4+ 1)h% (5.22)
L.y =myhy (5.23)
en =1,2,3,--- is the principle quantum number and controls the radial wavefunction as well as the
energy of an orbital.
e [=0,1,--- ;n — 1 is the orbital quantum number which controls the ratial wavelfunction and angular
wavefuntion.
e m = —[,--- [ is the magnetic quantum number and controls the angular wavefuntion.
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5.5 Wave Function Symmetry

Consider a system of two spin half particles. The system can be in either the singlet state (antisymmetric

state) e.g. Fermion: electron, positron, proton, neutron, ...
1
V2

or in one of the triplet states (symmetric states) e.g. Boson: deuteron, ...)

00) = —=(IT4) = 1))

1
NG
1-1) = 1)
11) = [11)

[10) = —=(I14) + 1)

5.6 Time Independent Non-Degenerate Perturbation Theory
H=Hy+ H'
The first order energy perturbation by H’ on state 1, is given by

B = (| 1 [0)
The pertubed wave function (first order) is given by
O 77,0
<wk ’H " > (0)

w3

(0) (0) k
ktn  En’ — Ej

The second order perturbation is given by

2
(||
E&O) o E}io)

EP =Y

k#n
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6 Atomic Phycics - 10%

6.1 General Knowledge
The common notation for a particular isotope of an element is
AR (6.1)

where E represents the element abbreviation and A is the atomic mass in atomic mass units. Since the mass
of the electrons is so small A is typically given by

A=Z+N (6.2)
where Z is the number of protons and N is the number of neutrons. The nucleus X is written as

14X (6.3)

6.2 Bohr Model
Borh made 2 assumptions:

1. The classical circular orbits are replaced by stationary states. These stationary states take discreet
values.

2. The energy of these stationary states are determined by their angular momentum which must take on
quantized values of A.
L =nh (6.4)

We can find the angular momentum of a circular orbit
L =m.v,r, =nh (6.5)
The cetripetal force is equal to the Coulomb force

1 Ze? Mev2

i n 6.6
dreg 12 Tn (6.6)
Thus
T = agn® (6.7)
where ag is the Bohr radius
ap =0.53 x 10710 m (6.8)
And the energy
1 Ze? Ze? m Ze? \? Z?
Ep = =mev, — =— = = —13.6=; eV 6.9
g'Men 4degry, 8TENTn 2n? (47reoh> n? ¢ (6.9)
6.3 Atomic Spectra
6.3.1 Rydberg’s Equation
1 1 1
—=R — - — 6.10
A a <m2 n2> (6.10)

where Ry is the Rydberg contant.
e Visible region: Balmer series m = 2
e Infrared region: Paschen series m = 3

e Ultraviolet region: Lyman series m =1
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6.4 Selection Rules

The selection rules for transition between states designated by n,l, m are given by

o Al =41

e Am;=0,%+1
e Amy;=0
e Aj=0,+£1

6.5 Blackbody Radiation
6.5.1 Plank Formula

8mh V3
e Classical: hv < kT )
u(y, T) = 872,)” kpT (6.12)
c
e Quantum : hv > kgT
8mh 4 —hv/kpT
u(v,T) = —5-v7e B (6.13)
c
6.5.2 Stefan-Boltzmann’s Law
P(T) = oT? (6.14)
6.5.3 Wein’s Displacement Law
29x102 m-K
Amax intensity = T (615)
6.6 X-Rays
6.6.1 Bragg Condition
2dsin @ = mA (6.16)

6.6.2 The Compton Effect

The Compton Effect deals with the scattering of monochromatic X-rays by atomic targets and the observation
that the wavelength of the scattered X-ray is greater than the incident radiation.

h
AN=XN-)= (1 —cosf) = A:(1—cosb) (6.17)
MeC
where ). is the Compton wavelength
h
Ao = =2427x 1072 m (6.18)
MeC

6.7 Atoms in Electric and Magnetic Fields

6.7.1 The Cyclotron Frenquency
2

mu
Solving for R we get
mu
_ v 2
R B (6.20)
and the cyclotron frenquency
2Tm qB
T=—— = — 6.21
qB ! 2mm ( )
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6.7.2 Zeeman Effect

The energy change is given from electromagnetism

U=—-u-B (6.22)
The perturbing Hamiltonian is thus
ge
H=-34-B=-=—J-B 6.23
Iz o (6.23)
The frequency shift
Av= B (6.24)
v= .
4mme,

6.7.3 Franck-Hertz Experiment

The Franck-Hertz experiment showed that the energy levels of mercury are quantized confirming quantum
theory.
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7 Special Relativity - 6%

1. The laws of physics are the same in all inertial frames.

2. The speed of light is the same in all inertial frames.

We can define

1 U
Y= o B = Z (7-1)
7.1 Time Dilation
At = yAt (7.2)

where At is the time measured at rest relative to the observer, At is the time measured in motion relative
to the observer.

7.2 Length Contraction

L
== 7.3
5 (7.3)

where L is the length of an object observed at rest relative to the observer and L’ is the length of the object
moving at a speed u relative to the observer.

7.3 Energy and Momentum

7.3.1 Relativistic Momentum and Energy
e Relativistic momentum p = ymov
e Relativistic energy E = ymoc?, E? = m3c* + p*c?
e Relativistic kinetic energy K = moc?(y — 1)

e Energy of photon (massless) E = pc

7.3.2 Lorentz Transformation (Momentum and Energy)

FE
o= (pe 5% (1.4
p;:py (7.5)
P, =p: (7.6)
E’ E
== (T - onr) (77)
C C
7.4 Four-Vectors and Lorentz Transformation
x’ v 0 0 B T
v [ o 10 o y
2| 0 01 o0 z (7.8)
ict! —iv3 0 0 v ict
Pl vy 0 0 B\ [pe
Pl | o 10 o]]p
LT o o1 o ]]p (7.9)
i —iv8 0 0 A £
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7.5 Space-Time Interval
C(AY)? = (A2')? — (Ay')? — (AZ)? = X(AY)? — (Ax)? — (Ay)? — (A2)? (7.10)
We define the space-time interval As
(As)” = ?(At)? — (Az)? — (Ay)® — (Az)? (7.11)
Space-time intervals may be categorized into three types depending on their separation.
e Time-like interval: If (As)? > 0, the two events occur in the same place but at different times.
e Light-like interval: If (As)? = 0, the two events are connected by a signal moving at light speed.
e Space-like interval: If (As)? < 0, the two events occur at the same time (simultaneously) but are

seperated spatially.

7.6 Lorentz Transformation of Electric and Magnetic Field

Given motion along the x axis:

E.=FE, E, =~(E, —vB.) E. =~(E, +vB,) (7.12)
! ! v / v
B, =B, B =~ (By n EE> B, =~ (Bz _ c—2Ey) (7.13)

7.7 Velocity Addition

' =y(x — ut) t' = (t — %m) (7.14)
c
de’ dz—wudt v—u
= —— = = 7.15
T T dt - %de 1-% (719)

7.8 Relativistic Doppler Formula

1-p
r = 7.16
1+ (716
e Red-shift (source receding)
Vreceding = TV0 (717)
e Blue-shift (source approaching)
7
Vreceding = 70 (718)
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8 Laboratory Methods - 6%

8.1 Data and Error Analysis

8.1.1 Accuracy and Precision

Reference value

Value

8.1.2 Propagating Uncertainties

The uncertainty

With this definition we can define the weighted average as

D wiTy

:L.WaV - ZZ wl

The uncertainty in this value is
1

Owav — \/m

8.1.3 Poisson Distribution

P(X = k)= Tre

The standard deviation from the mean value A is

o=V

It the experiment is repeated N times then the standard deviation is

ON =

=

8.1.4 Counting Statistics

(8.1)

(8.2)

Let’s assume that for a particular experiment, we are making counting measurements for a radioactive source.
In this experiment, we recored N counts in time 7. The counting rate for this trial is R = N /T. This rate
should be close ti the average rate R. The standard deviation or the uncertainty of our count is a simply

called the v/N rule. So
oc=VN

And the number of counts is N &+ v/N. The uncertainty can be expressed as
oR 1

R VN
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8.2 Instrumentation

e Thermocouple gauge: measurement of the degree of a vacuum by a thermocouple gauge is based
primarily on the decrease in thermal conductivity of a gas with decreasing pressure.

e Propotional counter: ionization by collisions.

e Work hardening: tangling of dislocation lines.

8.3 Radiation Detection
8.4 Interaction of Charged Particles with Matter

8.5 Lasers and Optical Interferometers

The properties of a laser are
1. Light is coherent.
2. Light is monochromatic.
3. Light has minimal divergence.

4. Light has a high intensity.

e Diode laser: a laser formed with a semiconducting active medium. The semiconductor is typically a
p-n junction that is injected with electric current.

e Gas laser: a laser where a free gas is the active medium. An electric current is run through the gas
to excite the atoms.

8.6 Fundamental Applications of Probability and Statistics
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9 Specialized Topics - 9%

9.1 Particle Physics
9.1.1 Elementary Particles
e Hadrons: Particles on which the strong force acts.

e Leptons are elementary particlea of half-integer spin (spin-1/2) that does not undergo strong interac-
tions.

Particle or Antiparticle name | Symbol | Charge iipt‘ozfa‘Vor nzrjlber Mass (MeV/)
Posircn o ;11 Lo 0 0.511
Kafimuon i o 0 105.66
Ar?t?:au - ;11 0|0 = 1776.84
lectron antmnentiie |5 Thol o | <0000
NTuon antihentiing e B R <017
T Ameneniiis o 0 | 0 A <155

9.1.2 Radiation

e Cherenkov radiation: Radiation produced when a charged particle passes through a dielectric
medium at a speed greater then the phase velocity of light in that medium (¢/n).

e Bremeetrahlung radiation: Radiation produced by a decelerating charge.

9.1.3 Radioactive Decay

e o decay
AX =573 Y +3 He (9.1)
e (3 decay (weak interaction)
B 49X =5 Y+e +7 (9.2)
BT gX =4 Y+er +7, (9.3)
e v decay
AX = 92X 4 (9.4)
9.1.4 Half-life
For an exponential decay
dN
= — _\N 9.5
" (9.5)
Solving this, we have
N = Nge™ ™ (9.6)
The half-life, 7, is
1
= — 9-7
r=1 (9)
If there are several kinds of decay, then
1 1 1 1
- ==+ =+ — (9.8)
T T1 T2 Tn



9.1.5 Nuclear Binding Energy

U —U; =K (9.9)
9.1.6 Fission and Fusion

e Fission
n+AN - AN S L+ M (9.10)

e Fusion

The sun undergoes fusion in a 4-step

20H +'H = ?H + e +v) (9.11)
2(et +e” — 2y) (9.12)
2CH +'H = 3He +7) (9.13)
SHe+°3He —*He+'H +'H (9.14)

9.1.7 Detectors

If the detector is of length L and the particles have speed v, the the resolving time must be

L
tres < — 9.15
- (915)
9.2 Solid State Physics
9.2.1 Reciprocal Lattice
by = 2722 X @3 (9.16)
aj] -ag X as
9.2.2 Bragg Diffraction
2dsin = nA (9.17)
9.2.3 Free Electron Gas
R k?
E= 9.18
The Fermi energy is
h2k2,
Er = 9.19
F 2m ( )
where kp is the Fermi momentum which is equal to
kg = (3nmw?)'/3 (9.20)
9.2.4 Effective Mass
1 1 d’FE
— == 9.21
mx* h2 dk.2 ( )
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9.2.5 Semiconductor

When a semiconductor is ‘cold’, all its electrons are tightly held by their atoms. When the substance is
heated, the energy liberates some electrons and he substance has some free electrons; it conducts. The more
energy the more electrons freed. So we are looking for a relationship where the conductivity increases
with temperature.

e Intrinsic semiconductor

E
n=p= VNN exp (_ %J:T) (9.22)

e Impurity semiconductor
— N-type: +5
— P-type: +3

9.2.6 Superconductor

According to the BCS theory, the attraction between Copper pairs in a super conductor is due to interactions
with the ionic lattice.
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Mathematics
V x (VU) =0
V- (VxF)=0

dxdy = rdrdf
dzdydz = rdd¢dz
dzdydz = 2 sin drdfde
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