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1 Classical Thermodynamics

1.1 Temperature and the Zeroth Law
1.1.1 Equilibrium
The zeroth law of thermodynamics: Two systems, each separately in thermal equilibrium

with a third, are in equilibrium with each other.

1.1.2 A Statistical Definition of Temperature

£y Ey
0 (Ey) Qo (Es)

Two systems are only to exchange energy between themselves. A system will appear to choose
a macroscopic configuration that maximizes the number of microstates. This idea is based
on the following assumptions:

(1) Each one of the possible microstates of a system is equally likely to occur;

(2) The system’s internal dynamics are such that the microstates of the system are con-
tinually changing;

(3) Given enough time, the system will explore all possible microstates and spend an equal
time in each of them.

For our problem of two connected systems, the most probable di- vision of energy between
the two systems is the one that maximizes Q (E;)$2(Es), because this will correspond to the
greatest number of possible microstates.

d dQ(E,) d(E>) dE, Ay dQ,

a5 [Q1(E1)Q0(Ey)] = QE,) 1B + Q(Ey) T de—El - Qld_E2 =0 (1.1)
hence dn®,  ding, o)
dE, dE, '
We can define the temperature 7' by
1w 03
where kg is the Boltzmann constant, which is given by
kp = 1.3807 x 1072* JK* (1.4)



1.2 The First Law
1.2.1 Energy

The first law of thermodynamics: Energy is conserved and heat and work are both forms

of energy.
dU = dQ + dw (1.5)

The work can be expressed by
dW = —pdV (1.6)

this equation is only true for a reversible change.
We now want to understand how adding heat can change the internal energy of gas. In
general ,we can write U = U(T,V'). Hence

ou ou
dU = | — | dT — ] d 1.
0= (or), o+ (), 4 o
We have that ou ou
dQ = dU + pdV <8T>Vd +{(8V>T+p} dV (1.8)
We can divide Eq.(1.8) by dT" to obtain
@ = a_U + 8_U + d_V (1 9)
ar ~\or), " [\ov ), | ar '
Hence the heat capacity at constant volume CYy is given by
0Q ou
=== == 1.1
o= (ar), = (7). 110

The heat capacity at constant pressure C), is given by

o (B, AG), o

oo (), (),
_ %
Cy

so that

We define the adiabatic index v by

vy (1.13)

1.2.2 TIsothermal and Adiabatic processes
Isothermal Expansion of an Ideal Gas

The word isothermal means "at constant temperature”, and hence the isothermal process

AT =0 (1.14)



For an ideal gas, we have dU = C/dT, so that
AU =0 (1.15)
hence
d@Q) = —dW = pdV (1.16)

the heat absorbed by the gas during an isothermal expansion from volume V; to volume V;
of 1 mole of an ideal gas at temperature T is

va Y2 RT v,
AQ:/C’[Q:/ pdV:/ %dvznmlnv2 (1.17)
Vi

Wi 1

Adiabatic Expansion of an Ideal Gas

The word adiabatic means "without flow of heat”. We define a change to be adiabatic if
it is both adiathermal and reversible. In an adiabatic expansion, therefore, there is no flow
of heat and we have

dQ =0 (1.18)
so that
dU = aw (1.19)
For an ideal gas
RT
CydT = —pdV = —anV (1.20)
so that T RV
In=2=——"In—> 1.21
! T Cy ! Vi (1.21)
For an ideal gas we have C), = Cy + R, and dividing this by CYy
C, R
_ S 1.22
T T T (1.22)
so that Eq.(1.21) becomes
TV = constant (1.23)
or
p'77T7 = constant (1.24)
and
pV7 = constant (1.25)

1.3 The Second Law

o Clausius’ statement pf the second law of thermodynamics: No process is pos-
sible whose sole result is the transfer of heat from a colder to a hotter body.

« Kelvin’s statement pf the second law of thermodynamics: No process is possible
whose sole result is the complete conversion of heat into work.



Irreversible Change

B B
55@:/ 4Q _ [7dQuw _
T J, T J, T —

2AQ _ [® dQu

| G
A T = Ja T

B B
dS:/ ereVZ/ aQ
a T a T

Consider a thermally isolated system where d) = 0 for any process, so that

dS >0

The first law revisited

For a reversible process, we have
dQ =TdS

Although the equation above only holds for a reversible process, we always have

dU = TdS — pdV
oU oU
iU = (%)Vdm (WLOW
oU oU
T‘(%)V p—‘(W)S

=), (or), - (&),

The Statistical Basis for Entropy

In fact, we can write

so that

hence

1 oS
T (8_U>v
1 dIn
kgT ~ dE
S =kplnQ

1.4 Thermodynamic Potentials
1.4.1 Maxwell’s Relations

Till now, we have defined the following thermodynamic potentials

U F=U-TS H=U+pV G=U+pV-TS

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)

(1.38)



PV

U H
-TSs i)
F oV G

Internal energy
dU =7TdS — pdV + pdN

Helmholtz free energy

dF = —SdT — pdV + udN

Enthalpy
dH =T7dS + Vdp + pdN

e Gibbs free energy
dG = -5SdT' + Vdp + pdN

(o7 )=~ (36)
)~ \8S),y
oT oV
(5).~ (55),.
(o)., (ar)
OV )y \OT ),y
oS oV
(), =),

Identify a Heat Capacity

Generalized Susceptibility

o Isobaric expansivity

o Adiabadic expansivity

(1.39)

(1.40)

(1.41)

(1.42)

(1.43)

(1.44)

(1.45)

(1.46)

(1.47)

(1.48)

(1.49)

(1.50)



o Isothermal compressibility

o Adiabatic compressibility

Reciprocity Theorem

1.4.2 Availability

Availability A is defined by
A=U—-"TyS + poV

(1.51)

(1.52)

(1.53)

(1.54)

(1.55)

(1.56)

and for any spontaneous change we have that dA < 0. This means that a system in contact

with a reservoir will minimize A which means
o minimizing U when S and 7" are fixed.
e minimizing H when S and p are fixed.
e minimizing F when 7" and V are fixed.

o minimizing G when 7" and p are fixed.

1.5 The Third Law
lim S(T) =0

T—0

(1.57)



2 The Fundamentals of Statistical Mechanics

2.1 The Fundamental Assumptions of Statistical Mechanics

A system will appear to choose a macroscopic configuration that mazimizes the number of
microstates. This idea is based on the following assumptions:

(1) Each one of the possible microstates of a system is equally likely to occur;

(2) The system’s internal dynamics are such that the microstates of the system are con-
tinually changing;

(3) Given enough time, the system will explore all possible microstates and spend an equal
time in each of them.

Macrostate <  Microstate

(A(t))ensemble = Y _ Pi(t)A; (2.1)

2.2 Ensemble

e« The microcanonical ensemble: an ensemble of systems that each have the same
fixed energy.

e The canonical ensemble: an ensemble of systems, each of which can exchange its
energy with a large reservoir of heat. This fixes the temperature T' of the system.

e The grand canonical ensumble: an ensemble of systems, each of which can exchange
both energy and particles with a large reservoir. This fixes the temperature T" and the
chemical potential u of the system.

2.2.1 The Microcanonical Ensemble (N, V| E)

system

1
==
Q

The internal energy

U=(E)=Y PE=E) P,=E (2.3)

2.2.2 The Canonical Ensemble (N,V,T)

H.R.
sys




The Partition Function

P e BE: e BE:
) — = 2.4
D 4 24
where
Z =Y e (2.5)
e The internal energy
olnZ
U=(L)= PE; = — 2.6
0 -5 ne -2 20

o Entropy

1
S=-kpy PP =-kzy P(-BE;—InZ)= = (U +kpTnZ) (2.7)

F=U-TS=—-kgThZ (2.8)

2.2.3 The Grand Canonical Ensemble (i, V,T)

H.R.
‘ Sys
e B(Ei—pN;) e B(Ei—pN;)
= Zz e—B(Ei—uN;) - zZ (2.9)
where
Z =) e By (2.10)
e The number of particles
10InZ
N=3"PN = 5 ar; (2.11)
e The internal energy
olnZ
U= PE =- ;ﬂ + uN (2.12)

o Entropy

1

S=—-ksy PP =—kp» P (—BEi+pBuNi—InZ)=— (U~ puN+ksTlnZ)

N

(2.13)

10



The Chemical Potential

If you add a particle to a system, then the internal potential energy will change by an amount
which we call the chemical potential .

AU = TdS — pdV + pdN (2.14)

This means we can write an expression for p

With the definitions F = U —T'S and G = U + pV — TS, implies that
dF = —pdV — SdAT + pudN (2.16)

dG = Vdp — SdT + pdN (2.17)

hence we can make the more useful definitions:

oF oG
R .

Eq.(2.14) implies that
dU  pdV  pdN

and with S = S(U,V, N), we can write down
a8 a8 0S
dsS =|—=— dU — dVv — dN 2.20
(07) 00+ (57) o @+ (37). (220
that we can therefore make the following identifications:
95y  _1 95\ _»p 95N B (9o
o)yy T oV )un T ON )y T

Grand partition function

Consider a small system with fixed volume V' and with energy ¢ and containing N particles,
connected to a reservoir with energy U — ¢ and N/ — N particles. We assume that U > ¢
and N > N. Using a Taylor expansion, we can write the entropy of the reservoir as

SU—-e,N-N)=S({UN)—c¢ (%)MV—N (%)W = S(U,N)—%(E—ILLN) (2.22)

Using S = kgIn (), we have
P o 5/F5 o PHN=2) (2.23)

Normalizing this distribution, we have

P=—" (2.24)



This is known as the Gibbs distribution and the situation is known as the grand canonical
ensemble. The normalization constant is known as the grand partition function Z

Z=) e Nt (2.25)

With the grand partition function Z, we can write down the following equations

olnZ
N=S"NP = kT 2.2
Z g kB ( aﬂ )/B ( 6)

InZ

v=> Eiaz—(aanﬁ ) + uN (2.27)

i m

1

S=—ksy PP == (U—uN+kpTlZ) (2.28)

Grand Potential

The grand potential is defined by
O =F — uN (2.29)

®( is a Legendre transform of F', from variable N to pu.
d®g = —SdT — pdV — Ndpu (2.30)

&= —kpTIn Z (2.31)

Extensive and Intensive Quantities

S(AU, AV, AN) = AS(U,V, N) (2.32)
F=U-TS
F(T,A\V,AN) = AF(T,V,N) (2.33)
Oy = F — uN
(T, V, 1) = —p(T, p)V (2.35)
2.3 Equilibrium
AU = TdS — pdV + pdN (2.36)
1
dS = —dU + Zav — Ean (2.37)

T T T

o« Thermal equilibrium

12



e Mechanical equilibrium

e Chemical equilibrium

1_ (88
T \oU

)V,N

1 B dln )
kgT ~ dE
AV
A B

13
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(2.39)

(2.40)

(2.41)



3 Classical Gases

3.1 Density of States

The ideal gas trapped in a box with sides of length L and volume V = L3. If there are no
interactions between particles, the energy eigenstates are simply plane waves,

1l -

= —e"" 3.1
v=re (1)

Boundary conditions require that the wavevector k= (K1, ka2, k3) is quantized as

27n,
ki = 7an with ni € Z (3.2)
the energy of the particle is
R’k 4m?R?

"= S = gpz (R )) (3:3)

The quantum mechanical single particle partition function is given by the sum over all energy

eigenstates,
Zy=>) e (3.4)

1% AV [ Vo=
Z—>/d3n: (27T)3/d3k:w/0 k:2dk:2—7r2 0 k2dk:/g(k:)dk: (3.5)

where VL
k)dk = .
g(k)dk =~ (36)
3.2 Ideal Gas
7y = / e PEW g (k) dk (3.7)
0
The energy of a single molecule with wave vector k is given by
nk?
E(k) = .
(h) =5 (33)
Hence ,
> R\ VE*dk  V (mkgT\?
Z - - 6.9 13 .
! /0 exp( b Qm) 272 R ( 2 ) (39)
which can be writen as
3
1 kaT 2
Zy =Vng where nQ =13 ( 5 ) (3.10)

where ng is known as the quantum concentration. We can define )y, the thermal
wavelength, as follows:

_1 [ 27 h
Mph = N3 = = 3.11
th nQ HL]CBT 27ka’BT ( )

14



and hence we can also write

V
71 = )‘_?h
o If the N particles are distinguishable
Zy = (Z)N
o If the N particles are indistinguishable
3N

F=—-kgTInhZy=—-kgT'NInV — k:BTTlnT — kT x constant

oF NkgT
g (aV)T oo

3.3 Interacting Gas

The total innternal energy U of the molecules in a gas can be written as
U="Ukg +Upk
And the partition function is given by

zZ\
4 = ZxE ZpE. = WZP.E.

1
ZPE :W / ce /dg’rl .o d3TNe_/BZZ<J U(T'ij)

The obvious way thing to try is to Taylor expand

2
e B Ulriy) — 1 _ @Z U(ry) + % Z U(ri)U(re) + - -

i<j i<jk<l

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

Unfortunately, this isn’t so useful. We want each term to be smaller than the preceding one.
But as r;; = 0, U(r;;) — oo, which doesn’t look promising for an expansion parameter.
Instead of proceeding with Taylor expansion, we will instead choose to work with Mayer

function
Jr) = eV —1

(3.21)

This is a nicer expansion parameter. When r — oo, f(r) — 0; when r — 0, f(r) — —1. So

we can write down

1
ZpE. ZW/"'/d37"1"'d3TNH(1+fz'j)

1<j

1<J 1<j,k<l

15

(3.22)



We assume that only one pair of molecules are close at one time. The number of ways

to select a pair of molecules from N molecules is

hence

and writing B(T") (the virial coefficient) as
N
B(T) = B} /d3r [1 — e_BU(T)}

we have that

NB(T
ZP.E. ~ 11— %
ZN [ NB(T)

and hence

F= —kBTIHZ = —kBTln [ZKE (1 -

the pressure

_(9F\ _ NkaT  NkaTB(T)
P==\eov),” v V2

Reranging, we have that for one mole of gas

pV B(T)
L I Sl
RT TV

3.3.1 The van der Waals Gas

The most commonly used model of real gas behaviour is the van der Waals gas.

o Intermolecular interactions

e The non-zero size of molecules

16

NB(T))} ~Fy ot NkgTB(T)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)



The equation of state for a van der Waals gas is

(p + vin%) (Vi — b) = RT (3.31)

0 b
Multiplying Eq.(3.31) by V2 for one mole of van der Waals gas (where V,, = V), we have
pV? —(pb+ RT)V*+aV —ab=0 (3.32)

The equation of state for one mole of van der Waals gas can be written with p as the
subject as follows:

p= % - % (3.33)
The Helmholtz function F' is related to p by p = —(0F/0V)r and so
F = f(T) — RTIn(V — b) — % (3.34)
hence the Gibbs function is
G:F+pV:f(T)—RTln(V—b)—%erV (3.35)

17



Figure 1: The Maxwell construction for the van der Waals gas. Phase coex- istence occurs
between points B; and By when the shaded areas are equal. The dotted line shows the locus
of such points for different temperatures

PBy [ OG Bo
G(pBQ, T) = G(pBl,T) +/ (—) dp = G(pBl,T) + / Vdp (336)
PB; dp T By
and since G(pg,,T') = G(pp, 1), we have that
B>
/ Vdp =0 (3.37)
By

Find the temperature T, pressure p., and volume V, at the critical point of a van der
Waals gas

RT a
dp RT, 2a
(&), —~w -
9*p 2kgT. 6a
gp _ fhele 24 4
(o), ~w it (340

so the critical volume V,, the critical temperature 7, and the critical pressure p, are
given by

8a a
= T. = = —— 41
Ve =3 “~ 27Rb Pe = 9752 (3-41)
We then have v 5
DPcVe
E— 3.42
RT. 8 ( )

18



3.3.2 The Law of Corresponding States
We define the reduced variables,
T

T=— V=
T,

__p
p__
Pe

NS

Substituting the reduced coordinates into Eq.(3.38) we find that

_ RT. T a
AT
and this can be rearranged to give
8T 3
P=35 )
3v—-1 V

3.3.3 The Dieterici Equation

P = Prepulsive + Dattractive

RT
Prepulsive =
P V—-b
a
Dattractive = _ﬁ

3.3.4 Virial Expansion

U=Ukg + Upk.

1
ZpE. = W/ /d37’1 d3r e PUPe
1 )
W/ /drl  Brye 3PS VIR-T)
1

=1+ o / / Ery e P [6—%6&# V(-7 _ 1}

N2
~14+ SN /---/d3r1 e dPry [e—BV(T) — 1}

N — r
:1+W dgr[eﬂv()—l}
N — s
NB(T NB(T
Zpp. ~ 11— T() ~ exp [—T(>1

F = —ICBTIHZ = —k?BTln(ZKEZpE) = F() — ]{JBTIH ZP.E. = FO + v

19
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(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.51)

(3.52)
(3.53)

(3.54)



B OF\  NkgT  NkgTB(T)
b= <av)T v T (3.55)
pV B(T)
£ .
T + v (3.56)
3.4 Cooling Real Gas
3.4.1 The Joule Expansion
Joule coefficient py
GT)
().
3.4.2 Isothermal Expansion
oU op
—_ ) =7(=Zx2) — .
(ov), =7 (57), 7 255
AU—/V2 T @ —pldV (3.59)
~ or), ! '

20



4 Quantum Gases

4.1 Photons

In the language of quantum mechanics, electromagnetic waves can be quantized as a set of
particles, which are known as photons. Each photon has energy

E =hw (4.1)
the density of states of electromagnetic waves as a function of wave vector k is given by

2 2
g(k)dk = Vk*dk 9= Vk2dk

4.2
272 T (4:2)

where the factor 2 corresponds to the two possible polarizations of the electromagnetic waves.
According to w = ck, the density of states of angular frequency w is given by

dk _ g(k)
=g(k)— = =<2 4.3
glw) = g T = L2 (43)
and hence Vurd
wdw

A state with N such photons has energy £ = Nhw. Summing over all N gives us the
partition function for photons at fixed frequency,

1

Zy=1+e M 7m0 4 = P (4.5)
So we have v o
InZ = /g(w) InZ,dw = s i w?In (1 - e_ﬁhw) dw (4.6)

The internal energy U for the photon gas is given by

U_ 0nZ _ Vh /OO w3dw _ Vrlky (47)
op n2c3 Jo effw — 1 156353 .
the energy density
U kY "
Ve’ AT (48)
where 274
T RB
= 5o (4.9)
We know that A = 40 /¢ and the Stefan-Boltzmann constant o is
ki, -8 —27,—4
c

21



4.1.1 Black-body Distribution
The expression in Eq.(4.8) can be written as

u= ‘(i u,dw (4.11)

so the spectral energy density is given by

h w3

5 T (4.12)

Uy =
This is the Planck distribution or black-body distribution. Similarly, with the relation

w=27mv and v = ¢/, we have
8th 3

8mhe 1
Uy = o eﬂhc/)\ 1 (414)

We can easily determine where this maximum occurs by finding the solution to du,,/dw =
0. It is T
Wi = 5i where €~ 2.822 (4.15)
and the wavelength
Amax ~ 10 pm (4.16)

4.1.2 The Einstein A and B coefficients

4.2 Phonons
4.2.1 The Einstein Model

The Einstein model treats the problem by making the assumption that all vibrational
modes of the solid have the same frequency wg. There are 3N such modes. We will
assume that these normal modes are independent and do not interact with each other. In
this case, the partition function Z can be written as the product

3N
zZ=1]% (4.17)
k=1
3N
nZ =[]z (4.18)
k=1

where 7, is the partition function of a single mode

I h 5_ —Lhwpp
n WE
= E e - e—TMEB (4.19)

This expression is independent of k so the partion function is Z = (Z;)*" and hence

1
InZ =3NInZ, = 3N {—57»1@5 —1In (1 — e ™"F) (4.20)
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and the internal energy U is

OlnZ 3N 3N
U=-— < 1 > =—~hwp + ————hwge "’
— e w

(4.21)
T BT e
Define Einstein temperature Og by writing hwg = kg©Opg, hence
h
Op = & (4.22)
kg
So the molar internal energy can be written as
U =3RO ! + L (4.23)
- P2 exp(@T—E) -1 .
In the high-temperature limit, U — 3RT'.
The molar heat capacity of an Einstein solid is given by
ou x2e” Op
C=|=—=)=3R——— h = — 4.24
(6T) (er —1)2 e T (4.24)

e AsT — 0, z — oo and C' — 3Rz%e™".
e AsT — o0, x — 0 and C' — 3R.

The high temperature result is known as the Dulong-Petit rule.

4.2.2 The Debye Model

Different from the Einstein model, the Debye model assumes a distribution of frequencies.
The number of vibrational states with frequencies between w and w + dw should be given by
g(w)dw and we require that the total number of normal modes be given by

/g(w)dw =3N (4.25)

The density of states of lattice vibrations in 3-D as a function of ¢ is given by

_ 4mg*dg _ 3Vgidg

9(g)dg = 2r /L) 3= 3 (4.26)

where V = L3 and the factor 3 corresponds to the three possible "polarizations” of the lattice
vibration. We assume that

W = v4q (4.27)
and hence —_
wdw

23



Debye frequency wp defined by

wp
/ g(w)dw = 3N (4.29)
0
implied that
1
6N 3\ 3
This allows us to rewrite Eq.(4.28) as
INwid
glw)dw = —= = (4.31)
Wp
we define the Debye temperature Op by
h
e, — &b (4.32)
kg
The partition function for phonons of a fixed frequency w
0 —Lrwp
. —(n+1)rws __ € 2
Z,= e (n3) = —— (4.33)

n=0

Summing over all frequencies, the partition function is then

wp wp 6—%hwEﬁ 9 9 wp
InZ = /0 g(w)In Z,dw = /0 g(w)In R dw = —gthDB—w—?)/O w?ln (1 — e ™) dw

D
(4.34)
The internal energy U
onZzZ 9 ONR [“P w3dw
U=— = ZNh 4.35
o5 g e w%/o o — (4:35)
The heat capacity C
oU  9Nh [“P —w3dw hw
o=2" _ = B 4.36
oT  wp /0 (ehwb — 1)26 ( kBTQ) (4.36)
Making the substition x = hfw and zp = hfwp, the molar heat capacity implies
9R [*P zierd
c="22 / retdr. (4.37)
rp Jo (67 —1)?
e AsT =0,z — ¢
9R [ z'e*d 12Rr*  127°R [ T \°
C%_g/ vedr Dhm Dl (4.38)
) Jo (ev—1) 5z, 5 ©p
e AsT w00, 20 —=0,e"—1—=x
9R [P
C— — / r*dr = 3R (4.39)
Tp Jo
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4.3 Bosons
"Lp(’f’é,fi) :w(f»l,?:’g) (440)

4.3.1 Bose-Einstein Distribution

Let’s denote the number of particles in state |r) as n,. The grand partition function for the
state is

1
— —ﬂnr(Er_,Uf) _
z =Y e = (4.41)

We assumed that the sum above converges, which is true only if (E, — p) > 0. We will set
the ground state to have energy Fy = 0, so we should have p < 0.

1
z=1lz =1l (4.42)
mZ=> Iz =- Z In [1 — e #E=)] (4.43)
10 e B(Er—p) 1
N = 3on InZ = Z T = => T > (nr) (4.44)

Here (n,) denotes the average number of particles in the state |r),

1

<nr> = B E—n) _ | (445)
This is the Bose-Einstein distribution.
1
FB)= Sm—p 1 (4.46)
4.3.2 Ideal Bose Gas
nk?
E = 4.47
2m ( )
3
Vo [2m)?
9(E) = (25 + 1) ( ;;) Jok: (4.48)
We use the notation of fugacity, z = . The particle number is
3 1
g(E) Vo [(2m)? /°° E2dFE
N=[|dF——————=(2s+1 _ 4.4
/ z7lefE — 1 (25 + )4 w2 o 2 tefE —1 (4.49)
The average energy is
3 3
Eg(E) V. [(2m\2 [ FE2dFE
U= |dE——————=25+1)— | — _ 4.50
/ 2—1efE — 1 (25 + )471'2 ( K2 ) /0 2=1leBE — 1 (4.50)
And the grand potential
1 [ 2
Og=—pV = —kpTh Z = B/ dEg(E)In (1 — ze 7F) = —3U (4.51)
0
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4.3.3 Bose-Einstein Condensation (BEC)

At zero temperature, all the atoms will be in the lowest-energy available state, and since
bosons are allowed in any given state, which means that every atom will be in the ground
state. For atoms confined to a box of volume V = a?, the energy of the ground state is

3h?
(P+1241%) = (4.52)

8ma?

h2

E —
07 Sma?

The avarage number of atoms in the ground state is given by Bose-Einstein distribution

1

NO - eﬁ(EO_IJ‘) — ]_

(4.53)

When T' — 0, Taylor expansion gives

1 1
No= T3 5E — )~ 1 BB 1)

The chemical potential pu, therefore, must be equal to Ep at T' = 0, and just a tiny bit less
than Ep when T is nonzero but still sufficiently small that nearly all of the atoms are in the
ground state. The remaining question is this: How low must the temperature be, in order for
Ny to be large?

The total number N of bosons, which is

3 1 3 1
V [/2m\? [ FE2dF Vo [(2mkgT.\? [ x2dx 3
N:(Zs—i—l)m (?) /0 —Z—leﬁE_l :<28+1>4_7T2 < h2 ) A o 1 ox T¢

(No > 1) (4.54)

(4.55)
3 1 3 1
V /2m\? [ FE2dFE Vo [(2mkgT\? [ z2dx 3
Nexcited = (2S+ 1)@ <?) /0 m ~ (25+ 1)H <T) /()v er* —1 1
(4.56)
3
T 2
NO =N — Nexcited = [1 - <T> N (457)

The abrupt accumulation of atoms in the ground state at temperatures below T, is called
Bose-Einstein condensation.

4.4 Fermions

4.4.1 Fermi-Dirac Distribution
Y(7, T1) = —1p(71,72) (4.58)

Pauli exclusion principle shows that fermions cannot sit in the same state, each state can
either be empty or singly occupied, so that {n,} = {0,1}, and hence the grand partition

function
Z, = Z e Bnr(Br=p) — 1 4 o=B(Er—n) (4.59)

n,=0,1

z=[[2 =[] [1+e"" ] (4.60)
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InZ = Zln Z, = Zln [1+ e PE=m] (4.61)

—B(Er—p)
N = ﬁauan leewr - ;m22<nr> (4.62)
the average number of particles in the state |r) is
1
() = SE—m 1 (4.63)
This is the Fermi-Dirac distribution.
f(E) = eB(Ei) | (4.64)

4.4.2 1Ideal Fermi Gas

We'll look again at non-interacting, non-relativistic particles with £ = h%k?/2m . Since
fermions necessarily have %—integer spin, s, there is always a degeneracy factor when counting
the number of states given by

gs =25+ 1 (4.65)
For non-relativistic fermions, the density of states is
v [2m\?
gs m 1
E) = — | E2 4.66
o) =4 (%) (4.66)

We use the notation of fugacity, z = e®*. The particle number is

3 1
B g(E) gV (2m)\? [ FE:dE
N_/dEZ_165E+1 - 47T2 h2 0 Z—165E+1 (467>
The average energy is
3 3
Eg(E) gV (2m\? [ FE2dFE
= [ dE = — —_— 4.
v / z71ePE + 1 4r2 \ p2 /0 2 1ePE 41 (4.68)

And the grand potential

bg=—pV = —kgTlnZ = _5 dEg(E)In (1 + ze 7%) = -3U (4.69)

4.4.3 Degenerate Fermi Gas and the Fermi Surface

In the extreme limit 7" — 0, the Fermi-Dirac distribution becomes very simple: a state is
either filled or empty.

1 1 for B
- { orEsn (4.70)

efBr—n) 41 0 for £ > p

Each fermion that we throw into the system settles into the lowest available energy state.
These are successively filled until we run out of particles. The energy of the last filled state is
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called the Fermi energy and is denoted as Er. Mathematically, it is the value of the chemical

potential at 7" = 0,

n2k2,
T =0)=Er =~
The particle number ,
Er gV [2m\? 3
The average energy
Er 3
U= / Eg(E)dE = SNEF
0

And the pressure of the degenerate Fermi gas

2 2
V=-U=-=-NFE
p 3 5 F

(4.71)

(4.72)

(4.73)

(4.74)

Even at zero temperature, the gas has non-zero pressure, known as degeneracy pressure. It

is a consequence of the Pauli exclusion principle.

4.4.4 The Fermi Gas at Low Temperature

4.4.5 A More Rigorous Approach: The Sommerfeld Expansion

Example: Evaluate the integral

- / " BB (B)E

as a power series in temperature. Where

1
f(E) - eBE—p) + 1

Solution: Consider the function

b(E) = / O(E)AE’

which is defined so that a4y
E) = 2
4(E) = T

and therefore

= ]| apf e = el - [ g = [

Let x = B(E — p) and hence

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)



We can express [ as a power series of integrals as follows:

CEHELLES e

When Sp > 1, we can replace the lower limit with —oo. The integral vanished for odd s,
but for even s we have

* rSetdx *® rie*dx * zfe*dx
e 2 e e
—oo (6 + 1) 0 (6 + 1) 0 (6 + 1)

=2 /000 dza’e™ Z(—l)”(n +1)e ™

n=0
=2 Z (n+1) /0 dzase (e (4.83)
=2 Z 1)t / e " dx
i n+1

n=1

(sh) (1—2"77) ¢(s)

where ((s) is the Riemann ¢ function. Thus the integral is

=2 i (3;%):0_0 (1—2"%)¢(s)

s=0,2,4,-

B - T2 d277/1 77‘(‘4 d4¢ L84
_¢($_0)+E<dm2> +360(dx4) _0+"' (4.84)
d¢ Tt 3¢

This expression is known as the Sommerfeld formula.

Heat Capacity of a Fermi Gas

The number of particles

A
. / _47T2 (h2) /O s (4.85)

hence

7'['2 kBT 2
RGN (e 4.86
1 12<EF) + (4.86)
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The energy

3 w2 (kg 2 [ 572
SEA |1 — — [ 22 AU I I e
hE 12( F) * g (
3 [ 7T2 k‘BT 2 17 57‘(‘2
2Ep |l — — | — 1+ —

- () ] 5 (

kgT
I

kT
Ep

) +
) +

(4.87)

Our real interest is in the heat capacity. However, with fixed particle number N | the chemical
potential also varies with temperature at quadratic order. We can solve this problem by
dividing by Eq.(4.85) to get

u 3 52
A R
ou

v (5r)
or N,V

h?

= —
2m (
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5 Relativistic Gases

E? = p*c® + m*c (5.1)
where m is now taken to be the rest mass.

o Non-relativistic case: p? < m?c?

2

7 1 2 2
E:m02(1—|— b ) :m02<1+— b ):p——l—m02 (5.2)

m2c?

« Ultrarelativistic case: p? > m?2c?

E = pc = hkc (5.3)

5.1 The ultrarelativistic gas

Using the ultrarelativistic limit £ = pc = hkc, we can write the single-partition function

Z) = / e e g (k) dk (5.4)
0
where VR2d
g(k)dk = (5.5)
272

using the substitution x = Shkc, we have

Vo1 V (ksT\’
7= — | —— “Trtdr = — T° :
1= 53 (/th> /0 e rdr = — ( _ ) xV (5.6)

We can also write Eq.(5.6) in a familiar form

Vv
where ,
p = em? (5.8)
~ kgT '
The N-particle partition function Zy is given by
ZN
Zy = ﬁ (5.9)
and hence
InZy =NInV +3NInT + constants (5.10)
or .
anN:Nan—SNlnA—NlnN—i—N:Nln(?)+N (5.11)
n

So we can derive U, Cy, F, p, S, H and G for an ultrarelativistic gas of indistinguishable
particles.

31



e The internal energy U

U= =3NkgT 5.12
% ’ (512
e The heat capacity Cy
v = (YY) Zsni (5.13)
Y= \er), T '
e The Helmholtz function F
F=—kgTIhZy=—-NkgTInV —3NkgT InT + constants (5.14)
F = —kgTInZy = NkgT [In (nA?) — 1] (5.15)
e Pressure p
oF NkgT u
b (av)T v Ty (5.16)
o The enthalpy H
H=U+pV =4NkgT (5.17)
o Entropy S
U-F 3
§ = —7— = Nks [4 —In (nA?)] (5.18)
e The Gibbs function G
G =H —TS = NkgT'In (nA®) (5.19)
5.1.1 Adiabatic Expansion of an Ultrarelativistic Gas
The entropy S stays constant in the adiavatic expansion, which implies that
VT? = constant (5.20)
or equivalently (using pV o T')
pV'3 = constant (5.21)
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5.1.2 The Difference Between Non-relativistic Gas and Ultrarelativistic Gas

Property Non-relativistic Ultrarelativistic
7 % 5
2
h her3
A = ZrrdT A=50r
U %N kgT 3NkgT
H gN kgT ANkgT
P nkgT = %u nkgT = %u
F NEkgT[In(nA%) —1] NkgT [In(nA%) —1]
S Nkp [2 —In(nX})]  Nkp[4—In(nA3)
G NkpTIn (nA},) NkpT In (nA?)
Adiabatic expansion VT3 = constant VT3 = constant
5 4
pV's = constant pV'3 = constant
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6 Phase Transitions

6.1 Liquid-Gas Transition

van der Waals equation of state

B k’BT _ a
p= v—>b 02
@ — _ kT 2a _ 0
o),  (v=>b2 3
82 2]€BT _ 6a —0
o?), (v=0)3 v
8a
kpT, = —
BRe ™ ot
_ 8T
p — -

Jv—1 ©?

6.1.1 The Clausius-Clapeyron Equation

We now want to find the equation that describes the phase boundary in the p — T plane

The requirement of chemical equilibrium

= Hg
G(p,T,N) = pu(p, T)N

and we have

dG = —SdT + Vdp

hence g v
dp = _NdT + Ndp = —sdT + vdp

In the phase boundary we have dy; = du + g, so that
— 51dT + vidp = —s,dT" + vedp

dp  sg— s [ L

AT ve—v  T(og—v) T(V,—W)
we usually define the latent heat
L=T(S; —5)
and also the Clausius-Clapeyron equation

dp L

AT~ T(o,— )  T(Vy— W)

Now we estimate for the entropy discoutinuity at a vapour-liquid transition.

() () o
Ql_ Vi - Pl B
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(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)



AS = A(kpIn Q) = ksTn(10%) ™ ~ 7R (6.15)

so that
L ~ 7RT, (6.16)

This relation is known as Trouton’s rule.

6.1.2 Stability and Metastability

au> 1 (8G>
<8p r N\9dp/r (617)
op\ 1 (0G\
(6_T) =N (8_T) == (6.18)
B 29V,
p—poexp<rRT> (6.19)

6.1.3 Classification of Phase Transition

The order of a phase transition os the order of the lowest differential of G' (or u) that shows
a discontinuity at 7.

o First-order phase transition: the entropy S and the volume V' (the first differential
of G) shows a discontinuity. The heat capacity Cy is a second differential of G and
thus it shows a sharp spike, as dose the compressibility.

o Second-order phase transition

6.1.4 Critical Exponents

Critical exponents describe the behaviour of physical quantities near continuous phase tran-
sitions. We will focus attention on physics close to the critical point.

- T v P
T=— b= — p=— 6.20
TC U UC p pC ( )

8T 3
_ = 6.21
30 —1 2 ( )

How various quantities change as we approach the critical point.

ﬁ:

o What happens to the difference in densities v, — v} as we approach the critical point
along the co-existence curve?

8T 3 8T 3
- = = - = 6.22
3o—1 o 30,—-1 02 (6.22)

]5:

If we solve this for T, we have

7 (Bu- 1)(3v§; 1) (01 + Ug) (6.23)
8vfv2
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1 1
U = 1— 58 'l_]g =1+ 55 (624)
_ 1 B
T~1- 1—6(vg —))? (6.25)
g — 0~ (T, —T)? (6.26)

o How does the volume change with pressure as we move along the critical isotherm.

op 9*p
[ f— — p— -2
(av)Tc (aUQ)TC ! (6:27)

P —Dc~ (U - Uc)3 (628>
o Compressibility
K= _Lov (6.29)
vOp |,
Op C W(T-T)+ (6.30)
81) T, v=v, B ‘ .
ke~ (T—T,)™? (6.31)
Gibbs phase rule
F=C-P+2 (6.32)
6.1.5 Fluctuations
Ip
N)=V_— 6.33
N =varl (6.3

6.2 The Ising Model

The Ising model consists of IV sites in a d-dimensional lattice. On each lattice site lives a
quantum spin that can sit in one of two states: spin up or spin down. We’ll call the eigenvalue
of the spin on the i*" lattice site s,. If the spin is up, s; = +1; if the spin is down, s; = —1.

E=-J]) sisi—BY s (6.34)
(i7) i

The notation (ij) means that we sum over all "nearest neighbour” pairs in the lattice and ¢

means the number of nearest neighbours.

If J > 0, neighbouring spins prefer to be aligned (171 or /). In the context of magnetism,
such a system is called a ferromagnet. If J < 0, the spins want to anti- align (1J). This is
an anti-ferromagnet. We’ll choose J > 0 in the following discussion although the difference
are minor.

We work in the canonical ensemble and the partition function

Z:Ze’BE:
{s:}

exp BJZ s;s; + BB Z S (6.35)
{si} (i) g
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Our interest is in the average spin, or average magnetization

1 1 OlnZ
m= Xi}si) = N3 oB (6.36)

6.2.1 Mean Field Theory

sis; =[(si —m) + m][(s; —m) +m]
=(s; —m)(s; —m) +m(s; —m) +m(s; — m) +m> (6.37)
~m(s; + s;5) —m?
The mean field approximation means that we assume that the fluctuations of spins away
from the average are small which allows us to neglect the first term (s; — m)(s; — m).

mf——JZ m(s; + s;) — 2]—3252-

1 (6.38)
The effective magnetic field
Beg = B+ Jgm (6.39)
Rewrite the partition function
Z = Ze = ¢ P/New’ (e FPer 1 eﬁBCH)N = ¢ PN 9N osh N (B B.g) (6.40)
{si}
and the magnetization
1 0lnZz
5 55 = tanh(3B + AJam) (6.41)
We now can solve this equation to find the magnetization m = m(T, B).
B=0
kgT. = Jq (6.42)
B+#0
6.2.2 Critical Exponents
Consider the magnetization at B = 0.
1
m = tanh(SJgm) ~ fJqgm — g(ﬁqu)3 + - (6.43)

magnetic susceptibility y

6.2.3 Some Exact Results for the Ising Model

As we mentioned above, there is an exact solution for the Ising model in d = 1 dimension
and, when B = 0, in d = 2 dimensions.
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6.2.4 1d Ising Model

N B N
FE = —JZ S8;Siv1 — 5 Z(SZ + Si+1) (644)
=1 =1

The partition function

N 8B
7 — Z . Z Hexp |:B(]3i3i+1 + 7(3Z + 35+1)] (6.45)

s1==+1 sy==%11i=1

B
(8i| T'|s:) = exp [5J8i8i+1 + %(Sz + Ss+1)] (6.46)
eBI+BB =BT
T = ( e—BJ 6,&7—53) (6.47)
Z =Tr((s1| T |s2) (so| T|s3) -~ {sw| T'|s1)) = Tx(T") = Z AN (6.48)
Z exp(BJsn_15n) = ¥ + e P! = 2cosh BJ (6.49)

Ay =’/ cosh(BB) £ \/625J cosh?(BB) — 2sinh(23.J)

(6.50)
=e™ cosh(BB) % /27 [1 + sinh?(8B)] — (27 — =20)

Let B = 0, then we have Ay = e/ £ ¢7#/ hence

Z =M\ + AN = 2% cosh™ (BJ) + 2V sinh™ (8.]) (6.51)
6.2.5 2d Ising Model
We will work on a square lattice and set B = 0.
6.3 Landau Theory
The Landau theory of phase transitions is based around the free energy.

1 1 N
F = 3 InZ = §Jqu2 ~3 In (2 cosh 3 Beg) (6.52)

The equation above can be thought of as an expression for F' as a function of m. The
equilibrium is guaranteed if we sit at the minimum of F'.

OF

Fr 0 = m = tanh S Beg (6.53)

In the context of Landau theory, m is called an order parameter.
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6.3.1 Second Order Phase Transitions

We consider a general system and denote the order parameter as m.

F(T,m) = Fy(T) + a(T)m? + b(T)m* + - -- (6.54)
We assume that b(7T") > 0 for all T'.
oF
— =0 6.5
I (6.55)

e When a(T") > 0, we have just a single equilibrium solution to Eq.(6.55) at m = 0.

« When a(7T") < 0, we have two stable solutions

—a
=4/ T<T. 6.56
m 5 (6.56)

If a(T) is a smooth function then the equilibrium value of m changes continuously from
m =0 when a(T) >0 tom # 0 at a(T) < 0. This describes a second order phase transition
occurring at T,, defined by a(T.) = 0.

F(T) =

{FO(T) T>T, (657

Fy(T) — & T<T,

Because a(7,) = 0, the equilibrium free energy F(T') is continuous at T' = T,. Moreover, the
entropy S is also continuous at T' =T,

OF
S=—— 6.58
5T (6.58)
oS
C=T— 6.59
oT ( )
We assume that near 7' = T, we can write
b(T') =~ by a(T) =~ ao(T — T,) (6.60)
then we have
mo~ =+, (T, ~T): T<T, (6.61)
2bg
NJ Np3J4q*
Fing(T,m) = =NkgTIn2 + Tq(l — JgB)m* + <%) m? (6.62)
6.3.2 First Order Phase Transitions
F(T,m) = Fy(T) + a(T)m + a(T)m* + ~v(T)m® + b(T)m* + - -- (6.63)
JNgq , N 2 N 4
Figine(T,m) = —=NkgT In2 — B+J ———(B+J -+ (6.64
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