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1 LAGRANGIAN MECHANICS

1 Lagrangian Mechanics

1.1 Action principle
1.1.1 Fermat’s principle

The idea of the ‘principle of least action’ has its origin in Fermat’s principle in optics,
according to which light follows the shortest optical path, i.e., the path of shortest
time to reach its destination.

A

y
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>

Figure 1: Snell’s law of refraction for light passing through media of different indices of
refraction.

According to Figure 1, consider a light ray from point (z,,y,) to (zs, ), the optical
path length follows

T(@) = =/ =P+ (=P + Vo 2P+ -9 D
According to Fermat’s principle, we need to find the minimum of this quantity.
oT(z)  m T — T, T — Xy
Oz _C\/Z‘a_x (Ya — y)? C\/xb—l‘ (yp — y)? (2)

= ——811191 + —Sm@z =0,
c c

which shows the Snell’s law:

sinfly ny 3)

sin 91 o

What happens if the refractive index is a function of space n(z,y)? The Fermat’s
action becomes

dT = V(dz)? + (dy)2. 4)
Suppose we parameterise the trajectory of the particle by a monotonic parameter \:
r(A) = (z(A), y(N), (5)

such that
t(Aa) = Tay (M) =25, Y(Aa) = Yar  Y(N) = o (6)

Then the Fermat’s action is

T = /A dA—”(””(A)C’yW) \/@—OQ + (%)2. (7)




1.1 Action principle 1 LAGRANGIAN MECHANICS

1.1.2 Euler-Lagrange equations

In configuration space (the space of coordinates and velocities), the action S is de-
fined as an integral over a function L(z, #,t) known as the Lagrangian, as

tp
Slz(t)] = / dtL(z(t),z(t),t). (8)
ta
For standard conservative systems the Lagrangian is simply the difference of the
kinetic energy 7" and the potential energy V, i.e.,
L=T-V. )

The actual physical trajectory is the function x that minimises the action subject to
the boundary conditions z(¢,) = z, and z(t;,) = x,. This perturbation changes the
action by an amount 4.5 given by

5S[x(t)] = /t "l B—i’(sx(t) + g—gaj;(t)] | (10)

For the second term, we may integrate by parts,

b OL oL g b d (0L b d (0L
/t At i(r) = {%M(t)} —/ta ars <%> &c@)_—/t ars (%> 53 (t).

a ta a

(1D
Substituting this result into the expression (10) for 6.5, we have
b oL d (0L
In order that S be stationary, i.e., §S = 0, we require
oL d (0L
on_d (%) —0. (13)

This is known as the Euler-Lagrange equation, and it is the equation of motion in
the Lagrangian formulation of mechanics.

1.1.3 Back to Fermat

In the gauge \ = y, the total time was given to

Yo d 2
T:/ dy—”<x(g)’y) (d—x) +1. (14)
Ya Y
The corresponding Lagrangian is
. n(z(y), da\ 2
Loty (o)) = O () 1 as)




1 LAGRANGIAN MECHANICS 1.2 Generalized coordinates

The Euler-Lagrange equation for this problem is

d ( OL oL
— | 3= | = 5 (16)
dy <8§—y) ox
which gives
d e onlz, Az 2
1 [ = ”g’;y) (d—g) +1. a7)
&)

Y

It simplifies a lot in the case where the refractive index is just a function of y, i.e.,
9n — (. Then

— |ny)——=—| =0, (18)

which is easily solved as

n(y) 2 =) — () sin(8(y)

A 1
Y @7 T @) W
(d—y> 41

where A a constant.

1.2 Generalized coordinates

We are free to choose whichever set of variables we want to parameterise the state of
the system. The variables are called generalised coordinates and usually denoted
by ¢;. The action of Lagrangian L(g;, ¢;,t) can be expressed as

08 = Z/dt [8% (gi)} = 0. (21)

Each coordinate satisfies the corresponding Euler-Lagrange equation

and

oL d (8L

- = =0, Vi=1,...,N. 22
aql dt aql) Y ? Y Y ( )




1.3 Conservation laws 1 LAGRANGIAN MECHANICS

1.3 Conservation laws
1.3.1 Momentum conservation

For any generalised coordinate ¢;, we define the generalised momentum p; by

oL
i = | 23
b= 5 (23)
The Euler-Lagrange equation gives

which shows whenever the Lagrangian L does not depend explicitly on ¢;, the corre-
sponding generalised momentum p; is conserved:

oL
dq;

=0 <& p;isconserved. (25)

1.3.2 Energy (or Hamiltonian) conservation

First, we consider the total time derivative of the Lagrangian:

Z qz + Z
B Z d (oL\ . N oL L oL oL
=23\, i 9 =i BN (26)
OL
= Z i
7 (a6) 5
Rearranging this equation, we have

% - (Z 04, > (ZM )— S @

This gives that whenever the Lagrangian does not depend explicitly on ¢, the Hamil-
tonian is conserved

oL
ot

=0 & H-= Zpiqi — L is conserved. (28)

1.4 Constraints and number of degrees of freedom
1.4.1 Lagrange multipliers

Starting with a Lagrangian L and a constraint function f(g;, ¢;,t), we define a new
Lagrangian L: .

8



1 LAGRANGIAN MECHANICS1.4 Constraints and number of degrees of freedom

Figure 2: A helter skelter.

The Euler-Lagrange equation for ) is given by

2R

68 oL d (0L
oA OA  dt

and therefore it imposes the constraint f = 0 independently of what A actually is.

1.4.2 Example: helter skelter

A child of mass m slides down a helter skelter (Figure 2), the Lagrangian is given by

1 )
L=-m (7‘“2 +720% + 22) —mgz, (31D
2
where
z=h—ad, r = (6. (32)

« and [ are positive constants and h is the height of the helter skelter. We take the
angle 6 to go from O to infinity as the trajectory winds around multiple times. The
constraints are

Ci=z—h+ab =0, Cy=r—p£0=0. (33)

We have two approaches to solve the constrained system. (1) The first one is to solve
the constraints and then substitute them back into the action, thereby reducing the
action. (2) The second one involves using multipliers and working on an extended
configuration space (¢;, ¢;, t, \) to solve the Euler-Lagrange equation.

(1) Reduced Lagrangian

Substitute the constraints into the Lagrangian:

L(6,1) = %m (529’2 v 320267 + a2é2) —mg(h — af). (34)

Then we can write he Euler-Lagrange equation for ¢

m% [(a2 + 62) 0+ B2929] = mB206% + mga (35)
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(2) ‘Extended’ Lagrangian
The ‘extended’ Lagrangian is

| .
L= gm (7’“2 + 7267 + z’2> —mgz+ M(z — h+ab) + Xo(r — (6). (36)

The Euler-Lagrange equations are:

for r, mr? — mii = -, (37)

for 0, ma (ﬁe’) — a\ — B, (38)
dt

for z, mZ+mg= A, (39)

for \\, z=h-—ab, (40)

for o, 1= p0. 41D

After Rearranging the equations, we get the equivalent result:

m% [(a2 + 52) + 5292] 0 = mpB200% + mga. (42)

1.5 Normal Modes
1.5.1 Kinetic matrix

Now we focus on the Euler-Lagrange equation again. Using the chain rule, we have
d /0L 0?L 0?’L 0L
— =—. 3
dt <aqi) Z d4; 8q] 94,00, * Z 930, * 8g0t ~ g (“43)

We can rewrite the expression in this form

> 2+ F=0, (44)

J

where the kinetic matrix Z% and the vector F* are both functions of the coordinates:

Z9( ' i, t) = TL _ g (45)
q1, y 4N, 41, y 4N, - aqzaqj — )
, 0*L 0*’L 0L
Fi o i oeee Onl 1) = ; . 46
(Q17 » 4N, 41, ygN ) aqlaqj QJ aqzat aqz ( )

So long as the symmetric matrix Z is non-degenerate, i.e. det(Z) # 0,
i = —(2); F. (47)

There are cases however where the matrix Z is ‘degenerate’ and det(Z) = 0 means
that not all coordinates ¢; are independent.

10



1 LAGRANGIAN MECHANICS 1.5 Normal Modes

We consider the situation where particles can move around their equilibrium posi-
tions, which means that the kinetic energy is a quadratic homogeneous function
of the generalised velocities. We can then write it as
1 A B
T= 3 izjaij<QI7 L qN) GG = 54 Aq. (48)
Since the Lagrangian is given by
LZT_V(Qla"'7QN7t)a (49)

where the potential does not depend on the velocities ¢;, we have
i _ O°L O*T A (1 . )
~a: 8- — T . - - S Aapqdad
0¢:0q;  0¢;0q;  0¢;0¢; \ 2 e

O (1 Oa. 1 . O o (1 R
B 2 oabda g, ~— 3. | ol 6ia AU a(si 50
g <2a 704, s 3 tasd 94 dq; 5 tapiads + 5 0apdalip (50)

o (1 . n 1 ) 1 . n 1 .
=5 | 5% 5%aida | = 5Qijq5 T 545G = Qij-
04; \ 2 B4 9 q 9 795 o4 qj J

The kinetic matrix is then given directly by the coefficients a;;.

1.5.2 Equilibrium points

From the calculation in above, we know that
oL

a—q = Clz‘ij. (51)
Then the Euler-Lagrangian equation becomes
d /0L OL d< ) 8T+8V
= _ = (a;:G;) — —
d . o (1 .. ov
= (ds) = o0 (§ajkqjqk) rn (52)
. 10ay,. . OV
=ai;4; 5 aqi q;4qk + 8% =0.
In the equilibrium point, ¢; is a constant, so we require
ov 207 Vi:1,2,"',N- (53)
a% qi=4q0i

1.5.3 Small oscillations

We can write the coordinates as ¢;(t) = qo: + d¢;(t). The potential energy in the form
of Taylor expansion:

ov 1 0%V
Vigo +9q) =V(qo) + 5| 06+ 55— 06:dq; + O(6q")
qi q Qiaqj 90
1 0%V e
_ — 2| Sqidg;.

do

11



1.5 Normal Modes 1 LAGRANGIAN MECHANICS

The action is given by

1 d d
S = / dt _§aij(qO)E<QOi + 5%)@(6103‘ +6q5) — Vi(gy + 5‘1)]

B o oV
—/dt éaij(qo)é%(s% - (V(%> + 3_% 0g; +

do

1 0%V
- | g 5q°
2 0q;0q; @ %4; +O(0q )>]

:/dt %%j(%)&h‘&]‘j - %bz’j<q0>5Qi5Qj:| - /dtV(qo),
) (55)
where
I 0?V
Y 3%5%.
The second term is just a constant, so for small fluctuations all that matters is the
quadratic part, which we refer to as the action for the quadratic fluctuations

(56)

Lo 1

(57)
P
:/dt (§5q Adqg — §5q B5q)
where the matrix A and B have the components A,;; = a;; and B;; = b;;.
The Euler-Lagrange equation for the fluctuations is
oL oL
4 (Ca) Ot (58)
dt 85% 85%
which is
aij&'jj = —bU(qu or A(Sq = —qu (59)
If det(A) # 0, then
dg = —Koq, (60)
with
K=A"'B. (61)

1.5.4 Gram-Schmidt diagonalization

Since the matrix A is symmetric (we may assume this from the outset), we can
always diagonalize it using a N x N orthogonal matrix O (07O = 1) so that

Ap =0TAO, (62)

with A p diagonal. The kinetic term

1 1 1 .. .
T =-0g"Aéq = =06gTOApOT5q = =6gT Apog
% . . . 1 1 . . 1 . (63)
255@(@1))1]'5@]’ = §(GD)1léq% + 5(&13)22555 +F §(GD)NN5CLQV,

12



1 LAGRANGIAN MECHANICS 1.5 Normal Modes

where
5q = O%4q. (64)

To put the kinetic term in diagonal and normalized form, we require

6qi =14/ (CLD)Z_ZICSQZ (65)

This is the statement that there is a diagonal matrix W whose matrix elements are

W, = (aD)i_il(sija (66)

such that
0q = WoQ, (67)

for which
WTApW = 1. (68)

These two operations amount to saying that there is a matrix S = OW such that
STApS =1. (69)
the action for the fluctuations becomes
1. . 1. .
Sy = / dt (§5QTSTAS<5Q - 55c,2TSTBS<5Q)
1 1 70)
— / di (§5QT5Q — 55@%5@) ,
where
k = S”BS. (71)

This is the canonically normalized form for the fluctuations.

1.5.5 Cholesky decomposition

The Cholesky decomposition of a real Hermitian positive-definite! matrix A, is a
decomposition of the form
A =LLT (72)

where L is a left triangular matrix with real and positive diagonal entries

# 0 0 O

# # 0 0
L= 73
4o# H# 0 (73)

i

So the kinetic term can be written as
1 1 1 . )

T = 564Asq = S0qLLT5q = 55QT5Q, (74)

1‘Positive’ means the eigenvalues of A are all positive.

13



1.5 Normal Modes 1 LAGRANGIAN MECHANICS

where
5Q = L74q. (75)
The action can be written in
1. .. 1.,
S=[dt §5qA5q— §5q Bdqg
1 . . 1_ .,
= [ dt §5Q5Q — §5Q ki@ (76)
1. . 1
— [ at <56@1~6Qi - 51&-&@5@]») ,
where
k=L"'BL")" (77)
The Euler-Lagrange equation for @); is given by
0Q; = —k;0Q  or Q= —kéQ. (78)

We can look for solutions of the form
5Q = ¢5Q. (79)
then we have the eigenfunction equation with the matrix k and eigenvalue w?

kéQ,, = w’0Q,, (80)

which means that each normal coordinate @, oscillates independently of all others
with its own normal frequency w?.

1.5.6 Example: double pendulum

Consider a double pendulum, with a second pendulum hanging from the first as
depicted in Figure 3. The kinetic energy of the system is

1 . 1 .
T :§MR2 +gm(R+ )
1 . 9 1 - 2 .9 L
__ - 81
MR +2m<R Iy +2Rr> (81)
:§MR292 + §mR202 + §mr2¢2 + mRrigcos(p — 6).

The potential energy is

V =Mg(—Rcosf) +mg(—Rcosf — rcos )

82
=— (M + m)gR cos @ — mgr cos ¢. (82)

The equilibrium solution is 6y = ¢y = 0, so 6 and ¢ can be expressed by
0(t) =00(t),  o(t) =3do(t) (83)

14



1 LAGRANGIAN MECHANICS

1.5 Normal Modes

Figure 3: Double pendulum

then we have

L :%(M +m)R%56% + %mrzécb'2 + mRréf5g — %(M +m)gR3*0 — %WWW

2
We define that

6Q1 = VMRG,

so the Lagrangian becomes

1 . 1 .
L) :§5Q% + 55623 -

and the potential energy is given by

V= —%5QT1<5Q = —% (6Q1 6Q2)k (

where

To simplify k, we choose R = r and M = m, then we have

L 9

The eigenvalues w? and w3 satisfies

det(k — w?1) = 7

Solve this, and we get

Wiy = (2% \/5)% > 0.

1 acge 1 ) AR 2 1 2
=3 MR0? + Sm <R50 + r5¢> — 5 (M +m)gR8% — Smgrag?.
Qs = /(R0 + 160),

1 (M +m)g

(84)

(85)

26— 0Qup, (80

T

_1) . (88)

1

(89)

[(B-—w)(1-w?)—1] =0. (90)

(9D

The associated eigenvectors are Q, = (1 & /2, —1). Go back to the original coordi-

nates 6, ¢, we know that

Q1N97

So the normal modes are

(0, 9) = (1 £V2,—(2£V2)) ~ (1,£V2)

Q2 ~ 0+ ¢

(92)

(93)

15



1.6 Symmetries and conservation laws 1 LAGRANGIAN MECHANICS

1.5.7 Summary

The Lagrangian describing the dynamics of a small oscillation system, subject to a
slight variation g, is given by

1. .1
L= iqT -q— §qu:q. (94)

Here, k represents the stiffness matrix. By solving the characteristic equation
det(k — A1) =0, (95)

we determine the eigenvalues, denoted by A. The system is stable at a stationary
point if these eigenvalues are positive (A > 0), and the square of the normal fre-
quencies w? corresponds to these eigenvalues, i.e., w? = \. The associated normal
modes are represented by the eigenvectors q.

1.6 Symmetries and conservation laws
1.6.1 Noether’s theorem

Let us parameterize our action by arbitrary coordinates ¢;

5= / dtL(q, ). 96)

Let A denote the parameter describing the continuous transformation. As this is a
global symmetry, this parameter is constant. Then under an infinitesimal transfor-
mation we assume the coordinates transform as

0q; = Fi(q, q)oN. 97)

Then the Lagrangian transforms as

oL oL OL OL .
0L =—9¢ —04 = F; I 8
et o= (G e 5 ) ©8)
If this is a symmetry, then this must be a total derivative, then
OL oL . d /0L dA dA

Noether then performed a clever trick. She make ) a function of time:
0q; = Fi(qi, 4i)OA(2). (100)

then the Lagrangian transforms as

5L(qs, ) =g + P54,
94 04; (101)
oL oL . OL _dsx dA .. OL _dSA
F+ 22 F Rl DRA gL pfon
(3% o Iqi )5A+ dg; " dt  dt at dg¢; " dt’

16



1 LAGRANGIAN MECHANICS 1.6 Symmetries and conservation laws

and the integration

dA oL _doéX d OL
0S = dtdL = dt | —N+ —F— | = dto— | A— —F. ). 102
9 / / (dt " %4 ’dt) / dt( 9 ) (102)

Define the Noether charge as

c=Lp 4 (103)
dq;
then we have 4C
e 0, (up to the boundary term), (104)

which is known as the Noether’s theorem: For every continuous symmetry, there
exist a conserved quantity G conserved in time.

Example
Consider the action .
S = / dt§mq2 (105)
and the transform ¢’ = ¢ + A, i.e., ¢ = 0\ with F =1 and A = 0.
G:a—L_F—A:a—L_:p (106)
dq dq

which means the corresponding generalized momentum component p to be a con-
stant of motion.

1.6.2 Hamiltonian as the Noether charge for time translations

Consider a system which is time translation invariant meaning that the action is in-
variant (un to boundary terms) under the symmetry ¢t — ¢+0t¢. Such a transformation
induces a change of coordinates

0¢i(t) = qi(t + 0t) — qi(t) = 0t (107)

Similarly the Lagrangian transforms as

dL
5L = L(q(t + 5t),§(t + 6t),t + 6t) — L(q, 4, t) = —

ot 10
il (108)

from which we infer
A=1L. (109)

Thus the conserved charge implied by Noether’s theorem associated with the sym-

metry of time translation invariance is
oL
4;

which we recognize to be the Hamiltonian.

17



2 HAMILTONIAN MECHANICS

2 Hamiltonian Mechanics

2.1 Hamiltonian formulation

In Lagrangian, we use coordinates and velocities (¢, ) to parameterise the system,
while in Hamiltonian, we use coordinates and momenta (¢, p) to parameterise the
system.

Lagrangian Hamiltonian
L=1L(gqt) <« H = H(q,p,1)
oL

P= %4

2.1.1 From Lagrangian to Hamiltonian
The total derivative of Lagrangian can be expressed as

L L L
8 dq,- + a—d(b + a—dt

L(q,q,t) ==

= Ld ;+ 4d'-+a—Ldt —
_aql Q’L p’L Qz 8t .
And we find that 5 5
L L
d(L — pi¢;) = z—dg; — ¢idp; + —-dt. (112)

aqi ot

Therefore, we can define the Hamiltonian function H by Legendre transformation

H=) pii—L. (113)

2.1.2 Hamilton’s equations

The total derivative of Hamiltonian can be expressed as

L L

dH = — 8_in + qidp; — a—dt

—8Hd ; + aHd ; + 8Hdt

A e S T

Comparing the two expressions, we have
OH OL OH OH oL

==y, =G, = ——. 115
dq; o 0 op, o ot (115)

These results are known as Hamilton’s equations.
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2 HAMILTONIAN MECHANICS 2.2 Hamilton’s principle of the least action

2.1.3 Conservation of the Hamiltonian

We can also calculate the time derivative of the Hamiltonian

ﬂ—a_H+Z a_H_|_8_H
at ot 4 \og " ap”

_8_H+Z 8H8H_8H8H _8_H (116)
ot dq; Opi  Opi 0q; ) Ot
which we summarize below

OH dH

o Al (117)

We can conclude that if the Hamiltonian has no explicit time dependence (i.e. 0H /0t =
0), then the Hamiltonian is conserved.

2.2 Hamilton’s principle of the least action

/dt (Z i1 H(q,p, t)) . (118)

Let us now perform the variation of this action in which we regard ¢;(¢) and p;(t) as
independent functions

= dt S0 — 8.
/ t1 Z ( dt dq; o4 Op; 5]%)

_ to dQZ OH dpz oH
ol [ dtZ[ (a5 (-5) ]

Thus demanding that §5 = 0 for variations which vanish as the boundary d¢;(t1) =
d¢;(t2) = 0, which implies Hamilton’s equations:

The phase space action is

(119)

A (120)
2.3 Poisson brackets
The total time derivative of A(q,p,t) is
SorEesE o
“% 1 (am),

19



2.4 Canonical transformations 2 HAMILTONIAN MECHANICS

where the quantity

0AO0H 0AOH
{A’ H} B Z <8Qi Op; a Op; aqz') ’ (122)

is known as Poisson bracket. The Poisson brackets for coordinates and momenta
are

¢ 36];‘ 0g; 3619‘
gl — E 4 i 12
{q“ q]} A (an Opy, Opr, Oqy, 0 (123)
B Z Opi Op;  Opi Op;\ _
=3 0q; Opj  0¢; Op; \ _ <
tan ps} = - (3% opr  peogc) = (123)

We can also write Hamilton’s equations in terms of Poisson brackets as

pi =1{pi, H}, ¢ ={q, H}. (126)

2.3.1 Properties of Poisson brackets

1. Anti-symmetric

{A, B} = —{B, A}. (127)
2. Satisfying the Leibniz/product rule
{A,BC} ={A,B}C+ B{A,C}. (128)
3. Jacobi identity
{A{B,C}}+{B,{C,A}} +{C,{A,B}} =0. (129)

2.4 Canonical transformations

The canonical transformation means a transformation which preserve Poisson brack-
ets. In other words, the transformation

q— Q(¢,p), p— Plg,p), (130)
take the same Poisson brackets, i.e.,
{f7 g}Q,P = {f’ g}q,pv (131)

is known as the canonical transformation. In fact, it turns out that it is enough to
check that the Poisson brackets for coordinates and momenta are unchanged under
the transformation, i.e.,

{Qia Qj}q,p = {Pi7 Pj}q,p =0, {sz Pj}q,p = 52‘]’7 (132)
or the opposite one
{gi.q;}o.r =1{pi,pitor =0, {a.p;}or =10 (133)

Any set of variables that satisfy these conditions are called canonical conjugates.
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2 HAMILTONIAN MECHANICS 2.5 Symmetries and conservation laws

2.4.1 Infinitesimal canonical transformations

The general form of an infinitesimal canonical transformation is
g = {4, G(q,p, t)}0X,  0p; = {pi, G(q,p, ) }ON. (134)
We define the phase space coordinates

[=1,---,N,
L (135)
Pr—-N I:N+1a72N7

then the form of the Poisson brackets are

0 1<I<N,1<J<N,
Sryon  1<I<NN+1<J<2N,
—0u-nyy N+1<I<2N,1<J<N,
0 N+1<I<2N,N+1<.J<2N.

{pr,ps} =Q; = (136)

Consider a infinitesimal change of coordinates p; — p; + dpo. The Poisson bracket
will change as

{pr,ps}t = 0Qr; = {p1,0ps} +{0p1,ps} = 0. (137)
According to the Jacobi identity {A, {B,C} + {B,{C, A}} + {C, {A, B}}, we have
{pla {pJ7 G}} + {pJa {G7p1}} + {G7 {PLZPJ}} =0. (138)
—=ierJg
Thus
{P[,{,OJ,G}} + {pJa{Gap[}} = O? VG<qap7 t) (139)

2.5 Symmetries and conservation laws
2.5.1 Noether’s theorem

In Lagrange frame, the infinitesimal form of the continuous global symmetry trans-
formation is
6g; = Fi(gq, g, t)SA. (140)

In Hamilton frame, we assume the existence of a generating function G(g, p) under
which the coordinates and momenta change as

gg&, opi = {pi, G(q,p) }oA = —a—GM (141)

6i: iJG ) oA =
¢ =1{¢4,G(q,p)} 90,

where )\ is an infinitesimal parameter. If the Hamiltonian does not change under
such a transformation, then the equations of motion are clearly invariant and so we
have a symmetry. Explicitly, under this transformation the Hamiltonian changes as

dH
H=—" 142
0 d)\(”\’ (142)
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2.5 Symmetries and conservation laws 2 HAMILTONIAN MECHANICS

where

dx dg; ON ~ Op; OA B dq; Op;  Op; Og;

) = {H,G}. (143)

This means that the Hamiltonian is invariant under the transformation if { H, G} = 0.
But if this is the case, then G is conserved because then

ilf — (G, H} =0. (144)

This is of course none other than Noether’s theorem: If the Hamiltonian is invariant
under a continuous transformation, then the generator GG of the transformation is a
conserved charge.

2.5.2 Noether charge as the generator

In phase space, the infinitessimal form of the continuous gloval symmetry transfor-
mation transforms both the coordiniates and momenta

0ai = Fy(a:p)6X,  p; = Gilg, p)oX. (145)

The corresponding generator in phase space expressed as

G = Z F A= Zpl (p,q) — A. (146)

2.5.3 Generator of rotations in two dimensions

Consider a two-dimensional problem with Cartesian coordinates (z,y)

+
ngmpy + V(22 +y2). (147)

Consider an infinitesimal rotation 66, the coordinates and momenta transform as

2"\ [cosdf —sindf\ (x\ [z —ydd\ [(x+ iz (148)
y')]  \sindd cosdl y) \y+x50)  \y+dy)’

( %) _ (C.OS 00 —sin (59) (px) _ (px —py(w) _ (px +(5px) (149)
vy, sindf  cosdb Dy Dy + P00 Y+ 0p,
So we have the changes
dx = —ydl, Oy =ax00, Op, = —py00, Odp, = py00. (150)
Since L is invariant, i.e., L. = 0, the generator is easily seen to be
G = po o + pyFy = po(—y) + pyr = TPy — ypa = L.. (151)
To check explicitly
ox = oG O\ = —yo\, oy = a—Gé)\ = 2O\, (152)
Opx Opy
Opy = —aa—G(S)\ = —p,0A, Opy, = —aa—Gé)\ PO (153)
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2 HAMILTONIAN MECHANICS 2.6 Hamilton-Jacobi formulation

2.5.4 Generator of time translations

Noether charge associated with time translations is the Hamiltonian, so we choose
G = H as the generator.

0q; = {qi, H}ot = ¢;0t, Oop; = {ps, H}ot = p;ot. (154)

2.6 Hamilton-Jacobi formulation
2.6.1 Schwinger’s formulation of Hamilton’s principle

If we evaluate the action

A2 dg; dt
S= [ dx (g pt)—| 155
/| [Zp L Hgp ) (155)

with the variation ¢; — ¢; + d¢;, p; — p; + dp; and t — ¢ + 6t. Follows by the chain
rule that

dql d5qz dot oOH oH oH
— CH— [ 80 - 2.
A dAZ[ T T <8qi 04+ p P T &) dA]

o) -

y Z [ dg dpi + &d_H _ (8—H(5qi + 8_H5pi + a—H&) ﬁ}

(9qi api ot dA
A2
:(széqz> Hat) ot / dA
A1

dq, OH dt dp; OH dt dH  OH dt
XZ{ ( dA)+5%(—dA—aqia%“(a—ﬁa)}

(156)

If we set A = ¢t then

= <Zpi(t2)5%’(t2) H(ty 5t2> (sz t1)0qi(t1) (t1>5t1>
+/tl dA; lép" <dt B 8pz»> o (_ a aqi) ot <E B E)} '

(157)
Again demanding that the variation only comes from the boundary terms we find in
addition to Hamilton equations

dH(q,p,t) _ 9H(q,p,1)
de o
Thus on the solutions of the equations of motion we have the boundary variations

- (Zpi(t2)5%(t2) H(ty 5t2> (ZPZ t1)0gi(t1) (t1)5t1) : (159)

(158)
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2.6 Hamilton-Jacobi formulation 2 HAMILTONIAN MECHANICS

2.6.2 Hamilton-Jacobi equation

If we evaluate the action on a solution of its equations of motion, the answer will
depend on the initial and final coordinates ¢; = ¢(t1), ¢ = q(¢2) and times ¢; and ¢,.
The total derivative of S = S(qo,t2; q1, 1) is

85

d d (t2) dt d (t1) + —dty. 160
S Z aq tQ QZ 2 2 + Z aql tl C_Iz 1 8252 1 ( )
Comparing the equations we see that
08 oS 08 08
pi(ts) = H(tz) = — pi(t) = — H(t,) = (161)

Jailts)’ oty Jailt)’ ot

For example, given a Hamiltonian for a non-relativistic particle in one dimension
p2
H=—+V(x,t), (162)
2m

using the above equations at time ¢ = ¢, we have

2S 1 [9S\?
oL <%) V(). (163)

This is known as the Hamilton-Jacobi equation.

2.6.3 Constants of motion

The variation of the action

= (Zpi<t2)5%’(t2) H{(t, 5752) (sz t1)dq;(t1) (t1)(5t1> : (164)

Consider a system in which the Hamiltonian is independent of ¢

OH dH

Now we define the new action via the Legendre transform with respect to the initial
data )
S =S — Ety, (166)

then
6S =65 — t,0E — Edty

_ Zpi(h)(;qi(tg) — Edty — Zpi(tl)(sqi(tl) —4,6F.
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2 HAMILTONIAN MECHANICS 2.6 Hamilton-Jacobi formulation

From which we know S = S(qq, t2; ¢1; ). We thus conclude that

R (168)

Example
The simplest example is a free particle in one dimension

2
g_ P

2m

Since the energy is conserved, we will perform a Legendre transformation with re-
spect to the initial time

S =S - Et, (170)
and we have ~ ~
oS 0S
- — = _F 171
8272 b, 8752 ( 7 )
whose solutions are )
S: —Et2+W(ZE2,$1). (172)
The Hamilton-Jacobi equation at the final time ¢, = ¢, () = x is then
108\ 1 fow’
The equation is easy to solve as
W = +£V2mE(zy — 7). (174)
Hence .
S = —Fty = V2mE(zy — x1) (175)

So the action is

— E(ty —t1) £ V2mE(zy — x7)

P (176)
== o (2= 1) +p(z2 — 21).
2.6.4 Perturbation theory
Consider a potential of the form
V=Vy+gW, (177
where |gV;| < |Vy|. The Hamilton-Jacobi equation for Vj
89Sy 1 (95
ot om (%> + Vo(x). (178)
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2.6 Hamilton-Jacobi formulation 2 HAMILTONIAN MECHANICS

Now if we write S = Sy + ¢S5’ and substitute into the full Hamilton-Jacobi equation

9S' 198,08 g (05
ot mos 0r . 2m (ax) ~ W)= W) (179)
We can develop a perturbative expansion
S=58+99 =S +gS +¢°S2+g°S5+--=>_ g"Sh. (180)

Example
Consider the simple case where 1, = 0 so that Sy is the action for a free particle

2

So(a, 1520, t0) = =5 —(t = to) + ple — x0). (181)
m
So we have Y
“20
= 182
and the equation for first order perturbation 5 is
851 P 851 .
Bt tmoe ~ @) (18

Perform the change of variables z = X + 2,

85’1 05

‘951 dX+ dt (95 g
X ot ) (184)
ai 651 + 95 dt
0X X ot )
0
<_X) X -
So
t
(f’ﬁ) o (x+p—t,t) = slz—/dtvl (x+p—t7t)- (185)
ot X m to m
The next order perturbation is then
89Sy 1 [9S\°
9 Tom (a_X) ’ (186)
whose solution is
1 t t 2
Sy=—— [ dt (/ dt'Vl(X+pt//m,t’)) : (187)
2m to to
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2 HAMILTONIAN MECHANICS 2.7 Constraints

Together, the solution of the H-J equation to second order in perturbation is
2

! t
S:—p—(t—to)—i—p(x—xo)—g/ dtV; (x+%,t>

2m to

s y 2 (188)
g / / / /
—— [ dt / dt'Vi(X +pt'/m,t +....
2m Jy, ( to i / )>

2.7 Constraints

The action in phase space
S:/dt > 4 H(g,p) (189)
i pZ dt ) p )
include a set of constraints C,,(q, p) = 0 with Lagrangian multiples )\,, and the action

becomes
_ 3 dq 3
S == /dt [ i pla - H(q,p) — o )\aCa] . (190)

Now we define the effective Hamiltonian

H*(q,p) = H(¢,p) + Y _ AaCa. (191)

The equations of motion of H* become

OH* OH*
= {pi, H'} = ———.
apz Y pZ {plﬂ } aqz

¢ ={q¢, H} = (192)

Consider a system with one constraint (', (¢, p) = 0, then

S = /dt <Zpl-q'i — H - >\101> , (193)

and
Cy ={Cy,H*} = {C1, H+ \C,} = {Cy,H} = C,. (194)

The secondary constraint C; not automatically equals to 0. We can write the sec-
ondary effective Hamiltonian as

H* = H+ MOy + MO, (195)
and

Cl == {Cl, H} + /\1{01; Cl} + >\2{Cl, Cg} == CQ + )\Q{Cl, CQ}, (196)
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2.7 Constraints 2 HAMILTONIAN MECHANICS

Cy = {Co, H} 4+ M{Cs, C1} + X {Cs, Co} = {Co, H} + M {Cs, C4 ). (197)

If {C1,Cy} = 0and {Cy, H} # 0, then we write the tertiary constraint C5 = {Cs, H}
and repeat the process. If {C, Cy} # 0 and {Cy, H} # 0, then we have

{CQ,H}

M=——"—= A=0. 198

1 {01’02}7 2 ( 9 )
Example
Consider the 2D harmonic oscillator

1 1 1 1

H = 292 4 292 & 20222 & 22 1
2px+2py+2w:1: ~|—2wy, (199)

with constrain C; = p, — 14z% = 0.

B _ 9C,9H  dC, OH

= —w?y — Brp,. (200)

The secondary constraint C, not automatically equals to 0.

0Cy OH 0C, 0H  9C,0H

I _ g2, 2 2.2
{C,C} = B2 +w? >0 (202)

So we have , ) -
N o= WPy O BwTT ) (203)

/821.2 + w2

2.7.1 Variations at fixed energy

We choose to focus on paths which have a fixed energy H = FE, and the constrained

action is
to p2 p2
S:/ dt|:p"l"———)\(—+V(7‘)—E):|, (204)
t 2m 2m
with SH*
. * p m. .
r={r, H} op ( +>\)m = p 1+)\r, (205)

and substituting back in gives

_ 2 m N2
S = /t1 dt {2(1 n )\)'r (I+ NV (r)+ )\E} . (206)

The equation for ) is

—T P=E-V = 14+A=|-——. (207)
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2 HAMILTONIAN MECHANICS 2.8 Dynamics in phase space

Substituting back in we obtain

S:/ B+ [t~y
I/,

(208)
E(ty—t))+ [ dty/2m(E - V)i
2.8 Dynamics in phase space
2.8.1 Phase portaits
For example if the system is described by
d3z dz d%x
E = (I’,E,E,t) —G(ZL’,y,Z,t), (209)
which introduce variables
d (* y
<yl = 2 (210)
z G(z,y,2,t)
We can recover form q
x
P = — = F 211
T = (), (211)
by grouping « = (z,y, z) and F = (y, z, G).
2.8.2 First order systems
Example
The population growth follow the logistic equation
d
d—f = kx — oa?, (212)
which is equivalent to
dt 1 1/1 o
S ) 213
de  z(k—ox) k (x+k:—ax> (213)

We can get ¢ by integrating z from x, to x

1 1 x x 1 r k—oxg
t= E(lnx—ln(k—a:c)) = Eln (k:—ax) = %ln (— > (214)

Therefore, the solution is

i k‘.?fo
#(t) = oxg + (k — oxg) exp(—kt)’ (215)
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2.8 Dynamics in phase space 2 HAMILTONIAN MECHANICS

for initial condition x(0) = xq > 0. For the critical point . = 0, we have two
solutions z. = 0 and z. = k/o. Let z(t) = x. + €dz(t)

& =k(z. + edx(t)) — o(x, + edz(t))?
= (kz. — ox?) + e(kéx — 20x.0x) — O(€?) (216)
e(k —20x.)0x.

So we have 4

E(ém) = (k —20z.)dz. (217)
Now we look at linear stability of each critical point:

M) 2.=0 = di=kéx = dz(t)=e"52(0) (repeller)

2) ve=k/o = Ji=—-kéz = Jz(t)=e*x(0) (attractor)

We summarise the procedure for solving the first order system & = F'(z):
(1) Find critical point F(x.) = 0.
(2) Perturb around x = z,. + €z, and

6z = F'(x.)dz. (218)

(3) * R[F'(x.)] > 0 — unstable (repeller)
* R[F'(z.)] < 0 — stable (attractor)
* R[F'(z.)] = 0and 3[F'(z.)] # 0 — oscillatory (libration)

2.8.3 Second order systems (2-d phase space)

For the second order system, a critical point . = {z.,y.} is a point at which both F’
and G vanish F(z.,y.) = G(z.,y.) = 0.

d [z F(z,y)

Bl = ’ 21

dt (y) (G(fc, y)- (19)
Everywhere except at the critical point, the slope of a trajectory in the phase plane
is given by

dy _ G(z,y)
D . 220
dv ~ F(z,y) (220)
Example
Consider the second order differential equation
d2x 1dV
- =i 221
de? mde YT (221)
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2 HAMILTONIAN MECHANICS 2.8 Dynamics in phase space

which can expressed as

d [z Yy
- = 222
i (o) = () 222
At the critical point
Ye =0, ﬂ =0. (223)
dx (Tesye)
Consider small displacements from critical points (z., y.)
T =x.+ 0, y =0+ dy, (224)
we have
di = 0y (225)
5 = — idV(a:(; + 6x)
m i
(226)
1 [dV(x.) d?V(x,.) o] 1d*V(x)
el R + e dx+ O((0x)%)| = e ox.
Therefore,
(D) 0i =0y = — L&V @) 50 — 252 = §z = Ae*™' (libration)
(2) 0i =0y = — L8V )50 — 262 = 6r = At (unstable)
We summarize the procedure for 2-d phase space
d (z\  [(F(z,y)
dt (y) B <G(w,y) ' (227)
(1) Find critical points F(x.,y.) = G(x¢, y.) = 0.
(2) Perturb around critical points = = z. + dx and y = y. + dy
: oOF OF 5
0 = dw o B + 5ya—y B + O ((6x)?) , (228)
oG oG
6y = dx— oy— ox)? 22
Y ma$m0+ yaymc—i—(')((w)), (229)
which can be expressed as
d (oz\ (0. F O,F dr\ oz ox
dt (59) - <3mG 3yG> . (59) M (59) - (59) | (230
where ) is the eigenvalue of M. So we have
596@)) At (51“(0))
= : 231
() == (570 @0

(3) * R[A\] >0 — unstable
* R[A] <0 — stable
* R[A] =0 and J[A] # 0 — libration
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3 RIGID BODIES

3 Rigid Bodies

3.1 Many-body systems

Let us consider a system consisting /V particles, which we may for instance label by

an integer a = 1,..., N. We define the total mass of the whole system
M = Z Ma, (232)
and the position of center of mass
Z meTg
R=="——. 233
i (233)

The total momentum of the system

P=> p,=)» mi,=MR. (234)

The total angular momentum of the system

L= Zma'ra X 1. (235)

The position r, can be expressed as r, = R+r} and > | m,r} = 0. The total angular
momentum

L= mi(R+7})x (R+7})
=S MR R+ > m R x i+ Y mari x R+Y mery x (936
:ZmaRX R—{—Zmﬂﬁ X fZ:Lcom+L*7

where
L* =Y mgr; x 7, (237)

is called the angular momentum about the center of mass.

3.2 Rotation about a fixed axis

Suppose the axis of rotation along the z axis, then the z component of the angular

momentum is
L.=) mgriw=Iw, (238)

where [ = Y, m,r? is the moment of inertia about the axis. The kinetic energy in
terms of [ and w is

T=Y %ma (ra9a>2 — %IWQ. (239)
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3 RIGID BODIES 3.3 Action for a rotating rigid body

3.3 Action for a rotating rigid body
The kinetic energy of the center of mass

T = Z %mai“g = Z %ma(R + 7*)?

a

= Z §maR2 + Z me R - T, + Z §mara2 (240)

a a

1. .2 1
= §MR + Za:§mara

com kinetic energy . o
rotational kinetic energy

Since the body is assumed rigid, all it can do is rotate relative to its center of mass
motion. Let w denote the angular velocity of the rotation, then we have

T =w X7, (241)
this preserves all the scalar products

d
G re=mil) =20ri = i) - (1 = 7)) = 2(rf =) - (W x (rf —7})) = 0. (242)

ma a

3.3.1 Rotation around a pivot
If we assume that the pivot point is taken at » = 0, then we have the constraints
R=wxR. (244)

When this is true we have
Ty =W X Ty, (245)

and to the action can be evaluated as
1
S = /dt; §ma(w X 14)% (246)

We stress this is only the correct form if the pivot is taken at the origin.

3.3.2 Switch vector to index notation

We can use some mathematical tricks (Levi-Civita symbol, Levi-Civita identity, Ein-
stein summation convention) to do with our work

(A X .B)z = 5ijkAjBk7 (247)
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3.4 Spin angular momentum 3 RIGID BODIES

EijkEitm = 0ji0km — 0jmOki. (248)
Then, we can calculate:

(w x %) = (eijaw;rs) (Eitmwiry,) = (€ijkCitm) WyTFwiTy,
=w;w; (010km — 0jmOkt) THTmy = Wil (5]»;7“;:2 — 7‘1*7“;) (249)

=ww; (057" — rfr;) .
Now we define the momenta of inertia

Li; = Z Mg (51']'7'2 - Tairaj) ) (250)

where r, = R + r}. The equivalent quantity defined relative to the center of mass
I = Z Maq (5@""22 - 7“21'7"2;‘) . (251)

With this notation, we can rewrite the action S
1 . 1 1 . 1
S = /dt <§MR2 + éwifijo) = /dt <§MR2 + §wTIw> . (252)

3.4 Spin angular momentum

The spin angular momentum

L=> myr,xi,=MRxR+L" (253)

then we have index notation

Li = E maeijkrajf’ak = E Ma€ijkTaj€llmWiTam = ]ijwj- (254)

a a

The angular momentum about the center of mass

L* =) mer, x 7. (255)
Similarly, we have
L = Iw;, (256)
and we also find that
oL 0L
= = =L 25
bo. 891 8(,%' ’ ( 7)
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3 RIGID BODIES 3.5 Euler angles

3.4.1 Component/vector notation

The angular momentum in vector notation

yg + 23 —TalYa —Tgq Wy
L= Z meg —TalYa I‘Z + yg —YaZza Wy =1I- w,
a —TgRq —YaZa x?; + yg Wy
where
yg + ZZ —TqYa TaZa
I = Z meg —ZalYa 362 + 3/2 —Ya<a
a —TaZa  —YaRa Tyt yZ

3.5 Euler angles
3.5.1 Rotations in 3 dimensions

A rotation in the x — y plane is given by

cosf, —sinf, 0
M,(0,)=[sind, cosfh, 0
0 0 1

A rotation in the y — z plane is given by
1 0 0
M,0,)=10 cosf, —sinb,
0 sinf, cosb,
A rotation in the = — z plane is given by
cost, 0 sind,
M, (60,) = 0 1 0
—sinfd, 0 cosf,
For instance under M, the vector transforms as
x cos B, + zsin b,

x
v =M(0,) |y = y
z —xsinf, + zcos 0,

Each matrix is orthogonal meaning M”* = M.

3.5.2 Parameterzing general rotations

(258)

(259)

(260)

(261)

(262)

(263)

Euler noticed that a general rotation can be written as a rotation with axis z then y

then 2 again

(264)
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3.5 Euler angles 3 RIGID BODIES

These angles are known as Euler angles. Thus
' =M, 0, p)u=M.(p)M,(0)M.(¢)u, (265)

where u is assumed independent of time as this is a rigid body then we have

dr* M, dM (0
= M) g oyn vy + M) PR D ()
dt dt dt
AM. () (260)
+ Mz(w)My(e)d—;u'
Because of the relation
u=M""r"=M"r* =M (V)M (0)M(o)r", (267)
we can write
M M
Ty VR L MUS VAT YIS
dt dt dt Y
AM. () (268)
+ M ()M, (0) =2 M () M (0) M (p)r = @,
where
M..(p dM, (0
=)+ a ) (PO prrio)) maie)
dt dt
AM.. () (269
+ M 0) (P M) MO M)
We notice that .
d dM dM
—(MM")=—M"+M = 2
3 t( ) i + = (270)
dM . \" dm” dM _ .
(TM > =M Fra (TM : (271)
So Q is an anti-symmetric matrix Q7 = —Q. We can write the equations above using
the Levi-Civita symbol in index notation as
dT;-k Q * * * *
g = St = (W X T7); = €pwiTy, = —€ijkT ;W (272)
So 2 can be expressed as
3
Qz’j = — Z €Wk - (273)
k=1
Noe we calculate €2, from which derivative the angular velocity vector w:
w =k + M. (9)j + oM. (1)) M ,(0)k
P (0)g + VM. (¥)M,(0) (274)

—=(1) cos Osin ¢ — O sin )i + (¢ sin 0 cos @ + 0 cos p)F + (@ + 1 cos O)k.
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3 RIGID BODIES 3.6 Principal axes of inertia

The new axis are given by

cos 1) cos p cos § — sin ¢ sin

e = M(v,0, @)i = | cosysinpcos +sincosyp |, (275)
— cos Y sin 6
R —sin v cos ¢ cos f — cos Y sin ¢
es=M(1,0,p)3 = | costpcosp —sinysinpcost | (276)
sin 1) sin 6
X cos @ sin 6
es=M(V,0,p)k = | sinpsinf | . 277)
cos 6

It is useful to write the angular velocity in the new basis
W= Z Wa o
«

—=(— cos 1 sin Op + sin h)é; + (cos 1 + sin v sin Op)é, + (1) + cos O¢)eés.

(278)

It is important to remember that the new basis is a rotating (and hence not iner-
tial!!!) one with basis vectors rotating with the body itself as so we have

de,

dt

=w X €,. (279)

3.6 Principal axes of inertia
3.6.1 Principal axies of intertia as reference frame
The angular momentum
L=> Iwaéa. (280)

The rotational kinetic energy for a body with pivot at the origin can be expressed as

1 1 .
T = 5 Zwalawa zéll(— cos ¢ sin 0 + sin 6>
a . . (281)
+ 512(008 V0 + sin ) sin 0p)? + 5[3@ + cos f¢)?.

Generally, the principal axes are not equal to each other, ie., I; # I, # I3. But
sometimes there are symmetries in the system. For example I; = I, then

T = %]1 (9’2 + sin? 9¢2> + %Jg @ + cos 9¢)2 . (282)

3.7 Rotation about a principal axis

As the principal axes are fixed in the body, they form a rotating frame of reference.
Now we want to distinguish between the inertial and rotating frames. The rate of
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3.7 Rotation about a principal axis 3 RIGID BODIES

change of the angular momentum in the inertial frame is

dL
| = Ea roXx F,=, (283)
which related to the rotating frame
dL dL
— = — L. 28
a|, " @ R—l—w X (284)

We calculate

i—f = > dalata + Zwm% = @alsea+ > wslsw x &y
° § ° g (285)
= dolaba+ Y wplpwre, x ég=> alolo+ Y wslgwrEparea.
a By o afy
So we have
Ino + Y wswyIpepay = Ta, (286)
B
or written explicitly for each component this gives
Loy + (I3 — I)wows = T4, (287)
Ly + (I — I3)wswy = 7o, (288)
Lws + (I — I)wiwe = T3. (289)

Example
Now we think about a specific system with w; = wy and w; = wy = 0. We can write
the solution in a combination of its background solution and a small variation:

w1 = (5&]1, Wo = (5&)2, ws = Wy + (5&]3. (290)
Then
]1(5@1 + (13 - I2)6w2w0 = 0, (291)
[26@2 + (Il - Ig)(x.)o&dl = O, (292)
I56ws = 0. (293)

Solving this and we get

d25w1,2 ([3 — [2)(]3 — Il)
ETC ., dwi 2. (294)

The system is stable if (I3 — I5)(I3 — ;) > 0.
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4 CLASSICAL FIELD THEORY

4 Classical Field Theory

4.1 Continuous Systems

In addition to mechanical systems consisting of a finite number of degrees of free-
dom, one is often also interested in continuous systems:

q(t) — oz, t).

4.1.1 One-dimensional example: string
The simplest example of the classical field theory is a string:
y = oz, 1). (295)

We assume that in equilibrium the string is stretched to length [, and has tension k.
The mass per unit length is p. The kinetic energy and the potential energy are

lo
T:/ dxlu(a¢> ., V=Ek(l—1). (296)
0 ot
The length of the infinitesimal segment of length is
=/ (dz)? + (do) —dx“1+(a¢) =dz [1+ = (gi) +..., (297)
and therefore the potential energy is
lo
V:/ dw k (8¢> : (298)
0 Ox
We now write the whole Lagrangian
o 1 [0¢ 190)
L_T—V—/O dx[— ((975) k(@x) (299)
The integrand is called the Lagrangian density and denoted by £
a¢a¢ 1 (0p\> 1. [0¢\*
(qﬁ, > “(at) -3kl 5, ) (300)

The action is

lo
/dt/ Azl <¢>, 99 ad)) (301)
Variation of the action is

) b or L 9(60) oL  0(69)
55—/dt/ dz <_5¢+ d(0p/0t) Ot +8(8¢/8x) Oz )

-Ja] lod”“"{aqb at( (azﬁ/aﬂ) i(%)}w

(302)
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4.2 Klein-Gordon scalar field 4 CLASSICAL FIELD THEORY

up to the boundary conditions. This leads to the Euler-Lagrange equation

oc 0 oL 0 oL
% o (awcb/at)) K <a<a¢/ax>> - (303)
So the equation of motion for the string is
1 0% 0%
Zor 0 (304

where ¢ = \/k/p.

4.2 Klein-Gordon scalar field

Now we generalize the Lagrangian formalism to quantities ¢ that are functions of
time and all three dimensions of space, ¢ = ¢(t, x,y, ). We can use the notation

9 (¢ 9 ¢ P\ _
a,u - Ot - (axoa 81‘17 a$27 831:3) - (&fa ax; 61/’ az) . (305)
The general Lagrangian density £ will now be a function of
L=L(},0,,z"). (306)
The resulting Euler-Lagrange equation is then
oL 0 oL
5 0 (d0,7) " 7
For the example of the Klein-Gordon scalar field defined as (¢ = 1)
1 1 1
£=5(00) = 5(V$)’ = V(6) =~ 0,006 — V(9), (308)
where n" = —1,7% = 0,n" = 6;;, (i,j = 1,2,3), and
9(0,9)
=0y, (309)
)

where the spacetime Kronecker delta is defined so that 6] = 1,507 = 0,67 = J;;.
Then or

= —n"0,0. (310)
R
Thus the Euler-Lagrange equations are
ov
O g (—n™8,8) = 0. 311
The resulting equation is known as the Klein-Gordon equation
ov
Op = — 312

which is the equation for a wave in four spacetime dimensions and we have defined
the d’Alembertian operator [J as

D:n‘“’@ﬁy:—83+V2:——+—+—+7. (313)
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4 CLASSICAL FIELD THEORY 4.3 Hamiltonian density for a continuous system

4.3 Hamiltonian density for a continuous system

For a continuous system described by a Lagrangian density £(¢,0,¢) for a field ¢ ,
we define the conjugate momentum associated to ¢ as

o
~ 9(09)

The Hamiltonian is given by H = [ d®zH, where the Hamiltonian density # is then
defined via Legendre transform as

, (314)

H = %w — L(¢,0,0). (315)
The phase space form of the action is then
s (99

S=[dt | &’z i H(p, 7, 0;0) | . (316)

To obtain Hamilton equation we perform the usual variations treating ¢ and = as
independent

a_H5¢ _ a_H@.(w _ (9_7-[57r]
om

55:/dt/d3x (0w0p)T + (0p)dm — B 9(8:0)

:/dt/d?’x —(Oym)dp + (8p)0m — a—H&b + 0; _OH_ S — a—H(SW
[ oH oH oH
3
= — — 9 [ — B )
Jau s (om+ 55 -0 (7)) 0+ (00 52) o
[ 0H 0H
_ 3. | ekl -
—/dt/dl’_ (8t7r+6¢>5¢+(8t¢ (S7T>67T:|7
where 0H OH oH
X —ox & (—a@m) ~ (318)
The Hamilton equations for a continuous system are then simply given by
0H OH
wy — 77 Yy = — ) 1
at(rb(x ) 57(1'“)7 atﬂ-('x ) 6¢(x“) (3 9)
For the example of the Klein-Gordon scalar field
1 1
H =g +5(V6) +V(9), (320)
the Hamilton equations are
. O0H , OH 9
= — = = —— = - ! 21
0] 5= T 7 Vo —V'(¢), (321)

which is equivalent to the Klein-Gordon equation derived in the Lagrangian formal-
ism

p=1=Vp-V'(p) = Op=V'(¢). (322)
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4.4 Noether’s theorem in field theory 4 CLASSICAL FIELD THEORY

4.4 Noether’s theorem in field theory

Consider a set of fields ¢;(z), and suppose that the action is invariant under the
global transformation
0¢r = FioA, (323)

where F; = F;(¢,0,6). The Lagrangian density transform as a total derivative
0L = 0,AM0N, (324)
and so explicitly (Einstein summation over /)

oL oL
—F + ———0,F; = 0,A". (325)
0o " 0uer)
Now we let 0\ as a function of all 4 spacetime coordinates x, then the full variation
of the action

oL
= 4 2 =
oS /d x (@LA O+ Fla@u@)aﬂé}\)
oL
_ [ at0 (A“ _F —> 5\ (326)
/ v g 18(81L¢I)
:/d“x(—@uﬂ)é}\,
where we have defined the current
oL
JH = Fj——— — A 327
90,01 (327)
and have
o, J" = 0. (328)

The Noether charge we previous obtained is just the naive charge associated with
this current

G = / P (z), (329)
which is conserved since
dG 3 0 3 3
e d*x0yJ" (x) = — | d&°xd;J'(x) = 0. (330)

4.5 Stress-energy-momentum tensors

The relevant global symmetry is translation invariance, of both space and time coor-
dinates z* — x* + a*. Under this symmetry a scalar field transforms as

¢ = 0,p0a” = Fréa”, Fr=0,¢. (331)
The Lagrangian density transforms the same way

0L = 0,L6a” = 0,A" 6a”, A", =o",L. (332)
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4 CLASSICAL FIELD THEORY 4.5 Stress-energy-momentum tensors

The conserved current is

oL
T", = ———0,0 — 0", L, (333)
9(0ug)
which is known as the stress-energy momentum tensor. Despite its two indices, it
is conserved like a current

9, T, = 0. (334)
In this case we have four Noether charges, which defined by
oL
-P,= [ &z ( 0y — (50,,£> : (335)
| ¥ (G0
This is the total energy and momentum of the system. In particular
=H= | dz 0 E) (336)
[ (e

is nothing other than the Hamiltonian.
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5 SPECIAL RELATIVITY

5 Special Relativity

5.1 Galilean relativity

From a modern perspective, the transformation between different inertial frames is
given by a “Galilean boost”, which takes the form

t'=t+ad, (337)
' = Rx — vt + a, (338)

where R is a rotation matrix and is an element of the group O(3), i.e. RTR =1, a’ is
a constant time translation and « is a constant space translation.

5.2 Minkowski spacetime

We can now define the geometry of flat or Minkowski space-time by defining a notion
of spacetime interval which measures the space-time distance between two points in
space-time at z* and x* + dz*

As® = =P A + Ar? = —2(Ax°)? + (Azh)? + (Az®)* + (Ax®)2 (339)
And we categorize the spacetime distance into three case:

As* >0, spacelike seperated,
As* =0, null seperated,
As®* <0, timelike seperated.

To express this in the four-vector notation, we can introduce the four-dimensional
Minkowski metric 1 defined as

|
Q

Ny = , (340)

o O O

S O = O
O = O O
_ o O O

which represents the metric in flat space-time. This metric is symmetric 7,, = 7.
Using the Minkowski metric, the flat space-time interval can be written as

As? = N At Ax”. (341)
We emphasize that when written in this form the multiplications are entirely com-

mutative, i.e., As® = 1, Azt Az” = Az, Az’ = Ax?n,, Azt = Azt Az'n,,.

5.3 Proper time

If a particle moving with a velocity v, the proper time A7 is given by

c2

1 1 2
AT = —gnabAa:anb = At? — gAa:Q = (1 — ”—) At (342)
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5 SPECIAL RELATIVITY 5.4 Lorentz transformation

The proper time of the particle is hence related to the physical time by

At = ~vAT, (343)
where we have defined the usual Lorentz factor
1
= — (344)

5.4 Lorentz transformation

In most of what follows, we work in ‘natural’ units where the speed of light in the
vacuum, ¢ = 1. Consider now a Lorentz boost in the direction z! = x by velocity v,
the time and space coordinates transform as

t'=~(t—vz), (345)
' =~z —vt), (346)
v =y, (347)
7 =z. (348)
Using the four-vector notation, this can be written as a matrix multiplication

20\’ v —vy 0 0 20

xt —vy v 00 x!

221 | 0 0 1 0 |2?]" (349)

3 0 0 0 1) \a?

Denoting the transformation matrix by A, and we will actually slightly abuse the
notation and denote it by A#,,

v —vy 0 O
y _|—vv v 00
Ay = 0 0 10 (350)
0 0 01
We can write the transformation in terms of the four-vector components as
= A" v, (351)

where A#, denotes the elements of the matrix A. The first index in A#, refers to the
row and the second index to the column.

Under a Lorentz transformation of the form, the flat space-time interval transforms
as

As? = N Azt Az, (352)
As? = n,, Ax" Az = nm,A“anaAl’gAxﬁ = AxaA“anw,A”BAxﬂ. (353)

Therefore, a Lorentz transformation is one that leaves the Minkowski metric invari-
ant, i.e.

A’uanw,Ayﬁ = 7704,B~ (354)

Actually we can use this as the definition of a Lorentz transformation.
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5.5 Poincaré transformations 5 SPECIAL RELATIVITY

5.5 Poincaré transformations

A Poincaré transformations include both Lorentz transformations (A) and transla-

tions a*
ot — o't = AN 2" + at, (355)

where A¥, and a* are constants. Two consecutive Poincaré transformations that map
from S to S’ and then S’ to S” can be described by a single Poincaré transformation
that maps from S to S”. To see this, consider the two consecutive transformations,

A7 A/7 !
gt 28 g 20 e (356)

and express their product as a third transformation

All,a//

xh —— """, (357)

We then have
JZHM :Al/uaxa + (ZNM

=A", 2" +a* = NP (N x® + a”) + a* = AP N G + (AP a” + dt).

So A", = A*, A, and a"* = A'*, a” + a'M.

(358)

5.5.1 Lorentz group

The Lorentz group is the 6 parameter group of Lorentz boosts (3) and rotations (3).
The Lorentz matrix associated with a boost of velocity v in the z-direction is

v —vy 0 O
y _|—vy v 00
Ay = 0 0 10 (359)
0 0 01
The Lorentz matrix associated with a boost of velocity v in the y-direction is
v 0 —vy O
0O 1 0 0
no—
AH, oy 0 40 (360)
0O 0 0 1
The Lorentz matrix associated with a boost of velocity v in the z-direction is
v 0 0 —vy
0 10 O
B
A% 0O 01 0 (361)
—vy 0 0 v
The Lorentz matrix associated with a rotation M is
10 0 O
0
A
A, = 0 M : (362)
0
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5 SPECIAL RELATIVITY 5.6 Lorentz scalars and vectors

5.6 Lorentz scalars and vectors

If a quantity remains invariant under a Lorentz transformation we shall call it a
Lorentz scalar. The space-time interval x - y is a Lorentz scalar:

Ty =0ty — (2 y) = nua™y"” = 0 e N sa’ = 1n.0° =2y, (363)
To simplify the notation further, we define a covariant vector x, by
T, =N’ = (=20, 2, 2%, 2%), (364)

and indicate it by using a subscript index. We say that we use the metric to lower
the index. The original position four-vector x# with a superscript index is called a
contravariant vector. The scalar product is then

x -y =2y, =x,y". (365)

To raise the index, i.e., turn a covariant vector back to a contravariant one, we need
the inverse of the metric tensor, so that

o= () e = (7)) ey’ = 0", (366)

Therefore
(n_l)uanau - 5“1/ - :ﬂ_, (367)

and we say that ()" is the inverse matrix of 7,,. We can simply write
(=)™ =n", (368)
and the expression for raising the index simplifies to
ot =n"z,. (369)

Similarly, we can also find the inverse Lorentz transformation matrix

(AHY, = AN (370)

5.7 Transformation law for tensors

Tensors can be thought of as linear relations between a number of four-vectors. For
example, if the four-vector z* is related to the following four-vectors y*, z* and w*
through a linear relation (i.e., a rank 4 tensor), this can be expressed as

ot = M*,05y” 2w (371)
and we find
ot =Nyt = A\MP gy 27w” = A M 0Ny Mg 2P A 7w’
:AMAAauAﬁpA’yUM)\Va/By/aZ/,Bw/'y — Ml#aﬁyy,azlﬁw/’y- (372)
So we have
J\TﬂaﬁW = A“,\Aa”AgpA,y"M)‘yag. (373)
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5.8 Action for a relativistic particle

For a relativistic particle the energy (Hamiltonian) is

H=-—""_ = \/p@+m (374)

-3
and the momentum is )
mr
-5
So the Lagrangian is
.2 2 -2
L=pi-H=—0 " _p/1-". (376)
112 1— 1 ¢

Then the action is

2
S = —mcz/dt 1-— Z_Q = mc/ V —Nwdatdar = —mcz/dT. (377)

48
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6 Relativistic Electromagnetism

6.1 Relativistic Lorentz law

To derive the relativistic formulation, we start from the expression for the Lorentz
force for a massive particle of charge ¢ and velocity v

dp

E:F:q(EquxB). (378)
The Lorentz force as the derivative of the momentum with respect to the proper time

T as
dp  dp
dr ~ Tdt

where u* = dz# /dr. The time derivative of the energy E of the particle is

q(u’E +u x B), (379)

E
& Fv-gBo (380)

from which we obtain the derivative with respect to the proper time as

dE
o =dE-u. (381)

Here, F is also the 0 component of the four-momentum, p° = E. We can now write
the proper time derivative of the four- momentum p* = (E, p),

E 0 E, E, E.\ [u

dp*  d|p.| [E. 0o B -B/|[u

Pl VO Bl A AR el (62)
pZ EZ By _ng O u3

The matrix appearing in this expression is called the Faraday tensor or the field-
strength tensor and denoted by F*,, so we can write more compactly the relativistic
Lorentz force equation as

(383)

The field-strength tensor is often written with two contravariant or two covariant
indices as

0O E, E, E.
~E, 0 B. -B,
~E, -B. 0 B,
~E. B, -B, 0

= pev = , (384)

or
0 —E, —BE, —E.
E, 0 B, —-B
Fu = nuF®, = | 2 : v (385)
= T E, -B. 0 B,

E. B, —B, 0
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6.2 Four-vector potential 6 RELATIVISTIC ELECTROMAGNETISM

The electric and magnetic fields must transform under Lorentz transformations:

E\=E|, (386)
B/ =B (387)
E'| =~(E, +v x B), (388)
B, =v(B, +vx E), (389)

where || refers to the component parallel to the boost velocity v, and L to the per-
pendicular components.

6.2 Four-vector potential

In terms of the electric potential ¢ and the vector potential A, the field strength
tensor is

0 —E, —E, —E.
E, 0 B, —-B,
w=\E, —B. 0 B,

E. B, —-B, 0

) . . 390
. 0 A, + 0,0 A, + 0y A, + 0,9 (390)
B _(Am + 0,0) 0 0,A, —0,A,  0,A, — 0A,
n _(Al“ + 0,¢) —(0.4, — 0,A,) 0 0,A, — 0, A,
—(Ay +0,9) —(0,A, —0,A;) —(0,A, — 0.4,) 0
We can write this in the form:
F., =0,A, —0,A,, (391)

where A, = (—¢, A) or equivalent A, = (¢/c*, A). We make it explicit here that we
are dealing with Lorentz transformations as we will see another type of transforma-
tions shortly, related to gauge ones:

o — A2 (392)
Ay = AJVA,, (393)
F, — ACAPF.. (394)

6.3 Action for a relativistic charged particle

The relativistic action for an charged particle is

dat dazv da#
S = /d)\ (—mq/ M v + qA#(x)ﬁ> ) (395)

The Euler-Lagrange equation is

d oL oL
O (a (%“)) = (396)
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6 RELATIVISTIC ELECTROMAGNETISM 6.4 Relativistic Maxwell’s equations

and

oL MENu dx” dx”

5 (dﬂ) B e b +qA,(x) = mn,,— + qAu(z) = p, + qA,(x), (397)
dx N ~ax "dx

dr
where dr = 1,/—1,,dz#dz”. So the Euler-Lagrange equation is

d 0A, dz”
I et aAu(@)) = 4 r (398)

Rearranging the expression, and then

dp,  0A,dz"” 0A, dz¥ dx”

= - = qF,—.
dx ~ Towax T o ax TN (399)
Here, F),, is called the Faraday tensor or the field strength tensor
F., =0,A, —0,A,. (400)
6.3.1 Gauge fixed version
We choose gauge A\ = ¢, then
dp; dz” ,
— gF. — — qF Fo 1
dt qr; dt q 20+q 1]’07 (40 )
where
0A;
Fig = 0;Ao — 0o Ai = —0i¢p — o E; (402)
Ej = 8114] - 8]_/42 = gijkBk:‘ (403)
Therefore
dpi 7
T qEi + qeijrv’ By. (404)

6.4 Relativistic Maxwell’s equations

The dynamics of the electromagnetic field is described by Maxwell’s equations,

P

V.E=—, (Gauss’slaw) (405)
€0

VX E = —aa—?, (Faraday’s law) (406)

V.-B =0, (magnetic Gauss’s law) (407)

V x B = ugdJ + uogoa—E. (Ampere’s law) (408)

ot

Now we can derive these in terms of four-vector potential. Begin with the Faraday
tensor, we can find the property

OuFya + 0 Foy + 00 F, = 0. (409)

51



6.5 Gauge transformations 6 RELATIVISTIC ELECTROMAGNETISM

So we have
0.Fyy + 0,F,. + 0,F.y = 0,B, + 8,B, + 0.B. =V - B =0, (410)
which is the magnetic Gauss’s law. Similarly,

)
O0F sy + 0:Fyo + 0, oy = == + 0,5, = ,E, =0, (411)

is the Faraday’s law.

OBy + 0 E, + 0. F, V. E
o) £0,E, — 0,B, + 0.B '
[ 7/ 2 Vil Yz zPy —
i L0,E, + 0,8, — 0.B, e g (412)
S0E. — 0,By + 0,B, o> ot

Combining the charge density p and the current J into a single four-current J* =
(p,J), for which J, = (—pc?, J) we therefore see that Gauss’s and Ampere’s law
take the form

0. F", = —pio .. (413)

The conservation law

8,J" =0, (414)

is equivalent to the continuity equation p + V - J = 0.

6.5 Gauge transformations

Consider the following the transformations
A, = A, + 0. (415)
This would change the field strength as
F,=0,A, —0,A, =0,A, — 9,A, = F,,. (416)

Therefore the transformation is a symmetry.

6.5.1 Lorenz gauge
Lorenz gauge is defined by

9, A" — 0, 417)
We can write

o, F", =0"F,, = 0"(0,A, —0,A,) =04, -0,(0"A,) = 0OA,, (418)
where O = 99,0, = —50? + V. So the Gauss’s and Ampere’s law can be written
* OA, = —pi0J,. (419)
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6.6 Lagrangian for electrodynamics

The Lagrangian density £ has to be a Lorentz scalar, and to be gauge invariant,
which means the Lagrangian density is invariant under both Lorentz (A, — A,%A,)
and gauge transformations (4, — A, + 0,x). The Lagrangian for electrodynamics is

1
L= = F"Fuy o+ pod,J" (420)

Here,

FME,, = (0"AY — 0"A")(0,A, — 0,A,) = 20" A" (0, A, — 9,A,). (421)
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