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1 VECTOR SPACES AND TENSORS

1 Vector Spaces and Tensors

1.1 vector spaces

1.1.1 Definition of a Vector Space

Definition. A real (complex) vector space is a set V - whose elements are called vectors
- together with two operations called addition (+) and scalar multiplication such that

1. V is closed under addition: ∀u,v ∈ V ⇒ u+ v ∈ V.

2. V is closed under scalar multiplication: ∀u ∈ V and ∀ scalar λ⇒ λu ∈ V.

Example.

(1) 3 component real column vectors

R3 =


ab
c

∣∣∣∣∣a, b, c ∈ R


(2) 2 component complex vectors

C2 =

{(
x
y

) ∣∣∣∣x, y ∈ C
}

1.1.2 Linear Independence

Definition. A set of n non-zero vectors {u1, u2, · · · , un} in a vector space is linearly
independent if

n∑
i=1

aiui = 0 ⇒ ai = 0 ∀i

Otherwise we say {u1, u2, · · · , un} is linearly dependent.

Let N be the maximum number of linearly independent vectors in V, then N is the
dimension of V.

Definition. A subspace, W, of a vector space V is a subset of V that is itself a vector
space.

1.1.3 Basis Vectors

Any set of n linearly independent vectors {ui} in an n-dimension vector space V is
a basis for V. Any vector v in V can be represented as a linear combination of the
basis vectors

v =
n∑

i=1

aiui (1)
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1.1 vector spaces 1 VECTOR SPACES AND TENSORS

1.1.4 Inner Product and Orthogonality

Definition. An inner product on a real vector space V, is a real number ⟨u,v⟩ for
every pair of vectors u and v. The inner product has the following properties

1. ⟨u,v⟩ = ⟨v,u⟩

2. ⟨u, av1 + bv2⟩ = a⟨u,v1⟩+ b⟨u,v2⟩

3. ⟨v,v⟩ ≥ 0

4. Define ∥v∥ =
√

⟨v,v⟩. Then ∥v∥ = 0 ⇒ v = 0

Definition. An inner product on a complex space V, is a real number ⟨u,v⟩ for every
ordered pair of vectors u and v. The inner product has the following properties

1. ⟨u,v⟩ = ⟨v,u⟩∗

2. ⟨u, av1 + bv2⟩ = a⟨u,v1⟩+ b⟨u,v2⟩
⟨au1 + bu2, v⟩ = a∗⟨v,u1⟩∗ + b∗⟨v,u2⟩∗ = a∗⟨u1,v⟩+ b∗⟨u2,v⟩

3. ⟨v,v⟩ ≥ 0

4. Define ∥v∥ =
√

⟨v,v⟩. Then ∥v∥ = 0 ⇒ v = 0

Example.

(1) For R3, the inner product of (a, b, c) and (d, e, f)〈ab
c

 ,

de
f

〉 = ad+ be+ cf (2)

(2) For C2, the inner product of (a, b) and (c, d)〈(
a
b

)
,

(
c
d

)〉
= a∗c+ b∗d (3)

Definition. The norm of a vector is defines as ∥v∥ =
√

⟨v,v⟩.

Two vectors are said to be orthogonal if their inner product is zero, i.e.

⟨u,v⟩ = 0 (4)

A set of vectors {e1, · · · , en} is orthonormal if

⟨ei, ej⟩ = δij =

{
0, i ̸= j

1, i = j
(5)

where δij is named as Kronecker delta.
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1.2 Matrices 1 VECTOR SPACES AND TENSORS

1.2 Matrices

1.2.1 Summation Convention

Example.
Cij =

∑
k

AikBkj = AikBkj (6)

This shorthand is known as the Einstein summation convention. In the example (1),
k is called a dummy index, and i and j are called as free indices.

There are three basic rules to index (suffix) notation:

1. In any one term of an expression, indices may appear only once, twice or not
at all.

2. An index that appears only once on one side of an expression must also appear
once on the other side. It is called a free index.

3. An index that appears twice is summed over. It is called a dummy index.

1.2.2 Levi-Civita Symbol

The Levi-Civita symbol has three indices and is defined as

εijk =


1, (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)

−1, (i, j, k) = (3, 2, 1), (2, 1, 3), (1, 3, 2)

0, otherwise
(7)

The alternating tensor can be used to write 3-d Euclidean vector (cross) products:

c = a× b ⇔ ci = εijkajbk (8)

A useful identity involving the contraction of two alternating tensors is

εijkεklm = δilδjm − δimδjl (9)

Example. Prove the vector identity a× (b× c) = (a · c)b− (a · b)c.

[a× (b× c)]i = εijkaj(b× c)k = εijkajεklmblcm

= (δilδjm − δimδjl)ajblcm = (ajcj)bi − (ajbj)ci

= [(a · c)b− (a · b)c]i

(10)
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1.2 Matrices 1 VECTOR SPACES AND TENSORS

1.2.3 Recall Special Square Matrices

• Unit matrix 1. 1ij = δij.

• Unitary matrix. U is unitary if UU † = U †U = 1

• Symmetric and anti-symmetric matrices.

– S is symmetric, if ST = S or, alternatively, Sij = Sji.

– A is anti-symmetric if AT = −A or, alternatively, Aij = −Aji.

• Hermitian and anti-Hermitian matrices.

– H is Hermitian if H† = H or, alternatively, Hij = H∗
ji.

– A is anti-Hermitian if A† = −A or, alternatively, Aij = −A∗
ji.

• Orthogonal matrix. R is orthogonal, if it satisfies

RTR = RRT = 1 ⇔ RT = R−1 (11)

1.2.4 Eigenvalues, Eigenvectors and Diagonalization

An eigenvalue equation takes the form

Ax = λx ⇔ Aijxj = λxi (12)

where Aij are the components of an n × n matrix A, and x is an eigenvector with
corresponding eigenvalue λ. Rearranging the eigenvalue equation gives

(Aij − λδij)xj = 0 (13)

which has non-trivial solutions (x ̸= 0) if

det(A− λ1) = 0 (14)

If A is Hermitian, then λ is real. There are n of them {λ1, · · · , λn}, for each one
there exists

Aije
(a)
j = λae

(a)
i (15)

The eigenvectors {e(a)} form an n × n matrix M =
(
e(1) e(2) · · · e(n)

)
. M is unitary

and

M†AM =

λ1 0
. . .

0 λn

 (16)
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1.3 Transformations under Rotations 1 VECTOR SPACES AND TENSORS

1.3 Transformations under Rotations

The two sets of components of x are related by an orthogonal matrix L and the
determinant det(L) = 1

x′i = Lijxj (17)

Recall that orthogonality means

LijLik = LjiLki = δjk (18)

The set of all such matrices forms SO(3) group. Under such a rotation/coordinate
transformation, the basis transforms according to

e′(i) = Lije
(j) ⇔ e(i) = Ljie

′(j) (19)

Definition.

1. A scalar ϕ(x) transforms under a rotation

ϕ(x) → ϕ′(x′) = ϕ(x) (20)

2. A vector vi(x) transforms under a rotation

vi(x) → v′i(x
′) = Lijvj(x) (21)

3. A rank 2 tensor transforms under a rotation

Tij(x) → T ′
ij(x

′) = LilLjmTlm(x) (22)

For higher rank tensor,

T ′
ijk···(x

′) = LipLjqLkr · · ·Tpqr···(x) (23)

this equation also gives the definition of a tensor.

1.4 Tensor Calculus

First we define the three direction derivatives

∇ =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
(24)

here ∂/∂xi = ∂i = ∇i.

• The gradient of ϕ is a vector if ϕ is a scalar.

(∇ϕ)i = ∂iϕ (25)

The gradient transforms under rotations

∂iϕ(x) →
∂

∂x′i
ϕ′(x′) =

∂

∂x′i
ϕ(x) =

∂xp
∂x′i

∂

∂xp
ϕ(x) = Lip∂pϕ(x) (26)

where Lip = ∂p/∂
′
i.
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1.4 Tensor Calculus 1 VECTOR SPACES AND TENSORS

• The divergence of F is a scalar.

∇ · F = ∂iFi (27)

• The curl of F is a vector.

(∇× F )i = εijk∂jFk (28)
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2 GREEN FUNCTIONS

2 Green Functions

2.1 Introduction

Green functions are an invaluable tool for the solution of inhomogeneous differential
equations. Here we consider the second-order linear ordinary differential equation
(ODE) with some boundary conditions. L is a linear second order differential oper-
ator, and

Lx[y(x)] =

[
d

dx2
+ p(x)

d

dx
+ q(x)

]
y(x) = f(x) (29)

The range of the parameter x is x ∈ [α, β] where α might be finite or −∞ and
β might be finite or +∞. f(x) is a known function. If f(x) = 0, the ordinary is
homogeneous; while when f(x) ̸= 0, the equation is inhomogeneous.

2.2 Variation of Parameters

Suppose that we know y1(x), y2(x) are solutions of Lx[y(x)] = 0, and they are linearly
independent. Then

y(x) = ay1(x) + by2(x) (30)

is a set of Lx[y(x)] = 0 for any constant a and b, and

y(x) = ay1(x) + by2(x) + y0(x) (31)

is a solution of Lx[y(x)] = f(x). y0 is called particular integral, and is any solution
of Lx[y(x)] = f(x).

Ansatz. We assume that the particular integral of ODE is given by

y0(x) = u(x)y1(x) + v(x)y2(x) (32)

If u(x) and v(x) are constants, then y0(x) just a solution of the homogeneous equa-
tion. To simplify the calculation, therefore, we will vary these parameters subject to
the constraint

u′y1 + v′y2 = 0 (33)

Rewrite the ODE

Lx[y0(x)] =u
′′y1 + 2u′y′1 + uy′′1 + v′′y2 + 2v′y′2 + vy′′2
+ p(u′y1 + uy′1 + v′y2 + vy′2) + q(uy1 + vy2)

=u(y′′1 + py′1 + qy1) + v(y′′2 + py′2 + qy2)

+ u′′y1 + 2u′y′1 + v′′y2 + 2v′y′2 + p(u′y1 + v′y2)

=u′′y1 + 2u′y′1 + v′′y2 + 2v′y′2
=u′y′1 + v′y′2 = f

(34)

gives
u′y′1 + v′y′2 = f (35)
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2.2 Variation of Parameters 2 GREEN FUNCTIONS

So we have{
u′y1 + v′y2 = 0

u′y′1 + v′y′2 = f
⇒

(
y1 y2
y′1 y′2

)(
u′

v′

)
= M

(
u′

v′

)
=

(
0
f

)
(36)

then (
u′

v′

)
= M−1

(
0
f

)
=

1

W (x)

(
y′2 −y2
−y′1 y′1

)(
0
f

)
(37)

where W (x) is the Wronskian, and

W (x) = det(M) = y1y
′
2 − y2y

′
1 (38)

So the solutions are

u′(x) = −y2(x)f(x)
W (x)

, v′(x) =
y1(x)f(x)

W (x)
(39)

2.2.1 Homogeneous Initial Conditions

The boundary conditions y(α) = y′(α) = 0 are called homogeneous initial conditions.
Integrating eqn.(39) gives

u(x) = −
∫ x

α

dx̃
y2(x̃)f(x̃)

W (x̃)
, v(x) =

∫ x

α

dx̃
y1(x̃)f(x̃)

W (x̃)
(40)

then

y0(x) = u(x)y1(x) + v(x)y2(x) =

∫ x

α

dx̃
y1(x̃)y2(x)− y2(x̃)y1(x)

W (x̃)
f(x̃) (41)

satisfies y0(α) = y′0(α) = 0.

y0(x) =

∫ x

α

dx̃
y1(x̃)y2(x)− y2(x̃)y1(x)

W (x̃)
f(x̃) +

∫ β

x

dx̃ · 0

=

∫ β

α

G(x, x̃)f(x̃)dx̃

(42)

where we have defined the Green Function

G(x, x̃) =

{
0, x < x̃
y1(x̃)y2(x)−y2(x̃)y1(x)

W (x̃)
, x > x̃

(43)

2.2.2 Inhomogeneous Initial Conditions

Consider more general initial conditions of the form y(α) = c1, y′(α) = c2. Choose a
function g(x) s.t. g(α) = c1 and g′(α) = c2. Define

Y (x) = y(x)− g(x) (44)

which satisfies Y (α) = Y ′(α) = 0, and

LxY (x) = f(x)− Lxg(x) = f(x)− g′′(x)− p(x)g′(x)− q(x)g(x) (45)

Then we can solve for Y as before and that will give us y(x) = Y (x) + g(x).
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2.3 Properties of Green Functions 2 GREEN FUNCTIONS

α βx

x̃

Figure 1: The range of variable x in the problem is x ∈ [α, β].

2.2.3 Homogeneous Two-Point Boundary Conditions

Consider homogeneous two-point boundary conditions y(α) = y(β) = 0. A solution
to ODE satisfies y(α) = 0 is

y(x) =

∫ x

α

dx̃
y1(x̃)y2(x)− y2(x̃)y1(x)

W (x̃)
f(x̃) + ay1(x) + by2(x) (46)

We choose y1(α) = y2(β) = 0. Setting y(α) = 0 gives

y(α) = by2(α) = 0 ⇒ b = 0 (47)

Similarly, setting y(β) = 0 gives

y(β) = −
∫ β

α

dx̃
y1(β)y2(x̃)

W (x̃)
f(x̃) + ay1(β) = 0 ⇒ a =

∫ β

α

dx̃
y2(x̃)

W (x̃)
f(x̃) (48)

which may be substituted into the solution eqn.(46) to give

y(x) =

∫ x

α

dx̃
y1(x̃)y2(x)− y2(x̃)y1(x)

W (x̃)
f(x̃) +

∫ β

α

dx̃
y2(x̃)y1(x)

W (x̃)
f(x̃)

=

∫ x

α

dx̃
y1(x̃)y2(x)

W (x̃)
f(x̃) +

∫ β

x

dx̃
y2(x̃)y1(x)

W (x̃)
f(x̃)

=

∫ β

α

dx̃G(x, x̃)f(x̃)

(49)

where we have defined the Green Function

G(x, x̃) =

{
y1(x̃)y2(x)

W (x̃)
, α ≤ x̃ < x

y2(x̃)y1(x)
W (x̃)

, x < x̃ ≤ β
(50)

2.3 Properties of Green Functions

Consider G(x, x̃) as a function of x at a fixed value of x̃ ∈ [α, β], which has several
properties

1. When x ̸= x̃
Lx[G(x, x̃)] = 0 (51)

2. G(x, x̃) is continuous at x = x̃

lim
x→x̃−

G(x, x̃) = lim
x→x̃+

G(x, x̃) (52)

3. ∂
∂x
G(x, x̃) has a unit discontinuity at x = x̃

lim
x→x̃+

∂G(x, x̃)

∂x
= 1 + lim

x→x̃−

∂G(x, x̃)

∂x
(53)

12



2.4 Green Function More Generally 2 GREEN FUNCTIONS

2.4 Green Function More Generally

Let G(x, x̃) be a function that satisfies

Lx[G(x, x̃)] = δ(x− x̃) (54)

δ(x) is the Dirac delta-function which satisfies

1. δ(x) = 0 when x ̸= 0

2. δ(x) = δ(−x)

3.
∫ b

a
δ(x− x0)f(x)dx =

{
0, x0 /∈ [a, b]

f(x0), x0 ∈ [a, b]

G(x, x̃) is called a Green function for the differential operator Lx. If G(x, x̃) satisfies
eqn.(54), then so does G(x, x̃) + Y (x), where Lx[Y (x)] = 0. If we impose 2 bound-
ary conditions on the Green function then it becomes unique for those boundary
conditions.

Now define

y0(x) =

∫ β

α

dx̃G(x, x̃)f(x̃) (55)

is a solution of Lx[y(x)] = f(x), which can be verified by operating on both sides
with Lx, i.e.

Lx[y0] =

∫ β

α

dx̃Lx[G(x, x̃)]f(x̃) =

∫ β

α

dx̃δ(x− x̃)f(x̃) = f(x) (56)

f(x) is a “linear combination” of delta-function spikes at each x = x̃ with coefficient
f(x̃). So y is a continuous linear combination of G(x, x̃) responses

y0(x) =

∫ β

α

dx̃G(x, x̃)f(x̃) (57)

This is called linear response.

2.4.1 Homogeneous Initial Conditions

The boundary conditions are y(α) = y′(α) = 0. If G(α, x̃) = G′(α, x̃) = 0, then

y(x) =

∫ β

α

dx̃G(x, x̃)f(x̃) (58)

is the solution of the ode and satisfies the boundary conditions. Now, let’s look for
the Green function with the right boundary conditions.
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1. For x < x̃, Lx[G(x, x̃)] = 0. G(x, x̃) = 0 is a solution of the homogeneous
equation that satisfies the boundary conditions that G(α, x̃) = G′(α, x̃) = 0. So
for x < x̃

G(x, x̃) = 0 (59)

2. For x ≥ x̃, Lx[G(x, x̃)] = 0. G(x, x̃) equals some linear combination of y1(x)
and y2(x)

G(x, x̃) = A(x̃)y1(x) +B(x̃)y2(x) (60)

We can find A and B by using the properties of G:

(i) G is continuous at x = x̃

A(x̃)y1(x̃) +B(x̃)y2(x̃) = 0 (61)

(ii) G′ has a unit discontinuity at x = x̃

A(x̃)y′1(x̃) +B(x̃)y′2(x̃) = 1 (62)

The solution is

A(x̃) = − yx(x̃)

W (x̃)
, B(x̃) =

y1(x̃)

W (x̃)
(63)

where W is the Wronskian of y1 and y2.

So we have

G(x, x̃) =

{
0, x < x̃
y1(x̃)y2(x)−y2(x̃)y1(x)

W (x̃)
, x > x̃

(64)

which agrees with that calculated before.

2.4.2 Homogeneous Two-Point Boundary Conditions

The boundary conditions are y(α) = y(β) = 0. The Green Function should satisfies

G(α, x̃) = G(β, x̃) = 0 (65)

We assume y1 and y2 are linear independent solutions of homogeneous equation,
and we choose y1(α) = y2(β) = 0.

G(x, x̃) =

{
A(x̃)y1(x) +B(x̃)y2(x), α < x < x̃

C(x̃)y1(x) +D(x̃)y2(x), x̃ < x < β
(66)

1. Boundary conditions: G(α, x̃) = G(β, x̃) = 0

A(x̃)y1(α) +B(x̃)y2(α) = B(x̃)y2(α) = 0 ⇒ B(x̃) = 0 (67)

C(x̃)y1(β) +D(x̃)y2(β) = C(x̃)y1(β) = 0 ⇒ C(x̃) = 0 (68)

so we have

G(x, x̃) =

{
A(x̃)y1(x), α < x < x̃

D(x̃)y2(x), x̃ < x < β
(69)
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2. Continuity of G and unit discontinuity of G′ at x = x̃

A(x̃)y1(x̃)−D(x̃)y2(x̃) = 0 (70)

A(x̃)y′1(x̃)−D(x̃)y′2(x̃) = 1 (71)

so we have

A(x̃) =
y2(x̃)

W (x̃)
, D(x̃) =

y1(x̃)

W (x̃)
(72)

The final result

G(x, x̃) =

{
y2(x̃)y1(x)

W (x̃)
, α < x < x̃

y1(x̃)y2(x)
W (x̃)

, x̃ < x < β
(73)

which agrees with that calculated before.

2.4.3 Higher Dimensions, More Variables

Consider a second order linear differential operator L on function y(x1, x2, x3)

L[y] = f(x1, x2, x3) (74)

and
L[G(x, x̃)] = δ(3)(x− x̃) = δ(x1 − x̃1)δ(x2 − x̃2)δ(x3 − x̃3) (75)

Let R be a three-dimension region in three-dimension Euclidean space∫
R

dx̃δ(3)(x− x̃)f(x̃) =

{
f(x), x ∈ R

0, x /∈ R
(76)

Example. The most famous example is

L =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
= ∇2 (77)

and the Green function satisfies

∇2G(x, x̃) = δ(x− x̃) (78)

Consider the Poisson equation for the scalar gravitational potential ϕ(x) in terms of
the scalar mass density ρ(x)

∇2ϕ(x) = 2πGρ (79)

The Green function for the Poisson equation that satisfying the boundary condition
G(x, x̃) → 0 as |x| → ∞ is

G(x, x̃) = − 1

4π|x− x̃|
(80)
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3 HILBERT SPACE AND STURM-LIOUVILLE THEORY

3 Hilbert Space and Sturm-Liouville Theory

3.1 Hilbert Space

Definition. A Hilbert space is an infinite dimensional complex vector space with inner
product ⟨·, ·⟩ and a infinite countable orthonormal basis {u1, u2, u3, · · · }.

The Hilbert space we will look at in this chapter will be a vector space of complex
function of a real variable x ∈ [a, b] with

1. an inner product

⟨f, g⟩ =
∫ b

a

f ∗(x)g(x)dx (81)

Functions f(x) and g(x) are orthogonal if ⟨f, g⟩ = 0. The norm of f is given
by ∥f∥ =

√
⟨f, f⟩, and f(x) may be normalised in f̂ = f/∥f∥. If ⟨yi, yj⟩ = δij,

then the set of {y1, y2, y3, · · · } is orthogonal.

2. Let {y1, y2, y3, · · · } be an orthogonal basis, then any function f(x) ∈ H can be
expanded

f(x) =
∞∑
i=1

fiyi(x), fi ∈ C (82)

and we have
fi = ⟨yi(x), f(x)⟩ (83)

3.2 Sturm-Liouville Theory

The theory of inhomogeneous differential equations of form Ly(x) = f(x) on x ∈
[a, b], where L is second order, linear and self-adjoint.

3.2.1 Self-Adjoint Differential Operators

Consider the differential operator

L = − d

dx

[
ρ(x)

d

dx

]
+ σ(x) (84)

where ρ(x) and σ(x) are real valued and defined on x ∈ [a, b] and ρ(x) > 0 on
x ∈ (a, b). Such an operator is said to be in self-adjoint form1.

Ly = − d

dx

(
ρ
dy

dx

)
+ σy = −(ρy′)′ + σy (85)

1Being in self-adjoint form does not mean that a differential operator is self-adjoint, that depend
on the operator and the specific Hilbert space.
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Definition. A second order linear differential operator L is self-adjoint on Hilbert space
H if 2

⟨u,Lv⟩ = ⟨v,Lu⟩∗, ∀u, v ∈ H (86)

Consider L as in self-adjoint form,

⟨u,Lv⟩ =
∫ b

a

u∗ [−(ρv′)′ + σv] dx

=− u∗ρv′
∣∣b
a
+

∫ b

a

(
u∗′ρv′ + u∗σv

)
dx

=− u∗ρv′
∣∣b
a
+ u∗′ρv

∣∣b
a
+

∫ b

a

(
−(u∗′ρ)′v + u∗σv

)
dx

=(−u∗ρv′ + u∗′ρv)
∣∣b
a
+

∫ b

a

(
−(u∗′ρ)′ + u∗σ

)
vdx

=(−u∗ρv′ + u∗′ρv)
∣∣b
a
+

[∫ b

a

(−(u′ρ)′ + uσ) v∗dx

]∗
=(−u∗ρv′ + u∗′ρv)

∣∣b
a
+ ⟨v,Lu⟩∗

(87)

L is self-adjoint on H if

ρ
(
u∗′v − u∗v′

) ∣∣b
a
= 0 (88)

3.2.2 Weight Functions

Any second order linear differential operator can be put into self-adjoint form. Con-
sider the most general operator

L̃ = − d

dx

(
A(x)

d

dx

)
−B(x)

d

dx
+ C(x) (89)

where A,B,C are real and A(x) > 0 for x ∈ [a, b].

Claim that there exists a function w(x) > 0 such that wL̃ can be written in self-adjoint
form, i.e.

w(x) [−(Ay′)′ −By′ + Cy] = −(ρy′)′ + σy (90)

rearranging this
−w(Ay′)′ −Bwy′ + Cwy = −(ρy′)′ + σy (91)

so we have 
Awy′′ = ρy′′

A′wy′ −Bwy′ = ρ′y′

Cwy = σy

(92)

2Compare with the definition of a Hermitian matrix M : Mij = M∗
ji.
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then
w′

w
=
B

A
, Aw = ρ, Cw = σ (93)

We choose w(x) such that

w(x) = exp

[∫ x

a

B(x̃)

A(x̃)
dx̃

]
(94)

where w(a) = 1.

Definition. The inner product with weight w ∈ R

⟨f, g⟩w = ⟨f, wg⟩ =
∫ b

a

f ∗(x)w(x)g(x)dx (95)

3.2.3 Eigenfunctions and Eigenvalues

Consider the inhomogeneous eigenfunction equation

L̃y = λy (96)

we may define an operator in self-adjoint form L = wL̃ and eigenfunction equation
becomes

Ly = λwy (97)

A solution is called an eigenfunction of L with eigenvalue λ and weight w(x). We
claim that

1. The eigenvalues λ are real.

2. The eigenfunctions y with distinct eigenvalues are orthogonal.

Proof. Consider two eigenfunctions, yi and yj of L̃ with eigenvalues λi and λj re-
spectively. They are also eigenfunctions of L with eigenvalues λi and λj and weight
w. Then we have

⟨yi,Lyj⟩ =⟨yj,Lyi⟩∗ = λ∗i ⟨yj, ωyi⟩∗ = λ∗i ⟨yi, ωyj⟩ = λ∗i ⟨yi, yj⟩w
=λj⟨yi, wyj⟩ = λj⟨yi, yj⟩w

(98)

Compare the two expressions at the end of each line, we find

(λ∗i − λj)⟨yi, yj⟩w = 0 (99)

• For i = j we have
(λ∗i − λi)∥yi∥2w = 0 (100)

so, if we have non-zero eigenfunctions, then λ∗i = λi, i.e., the eigenvalues are
real.

• For i ̸= j we have
(λi − λj)⟨yi, yj⟩w = 0 (101)

so, if we are considering distinct eigenvalues, then ⟨yi, yj⟩w = 0, i.e., the eigen-
functions are orthogonal with weight w(x).

□
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3.2.4 Eigenfunction Expansions

The eigenvalues of a self-adjoint operator with w form a discrete, infinite sequence
λ1, λ2, λ3, · · · such that |λn| → ∞ as n → ∞, and that the corresponding eigenfunc-
tions with weight w, y1, y2, y3 · · · form a complete orthonormal basis for functions on
[a, b] in the Hilbert space. So any function f ∈ H can be expanded as

f(x) =
∑
n

fnyn(x), fn ∈ C (102)

where

fn = ⟨yn(x), f(x)⟩ω =

∫ b

a

y∗n(x)w(x)f(x)dx (103)

Substituting into the expansion we find

f(x) =
∑
n

∫ b

a

dx̃y∗n(x̃)w(x̃)f(x̃)yn(x)

=

∫ b

a

dx̃

[
w(x̃)

∑
n

yn(x)y
∗
n(x̃)

]
f(x̃)

=

∫ b

a

dx̃δ(x− x̃)f(x̃)

(104)

where
δ(x− x̃) = w(x̃)

∑
n

yn(x)y
∗
n(x̃) (105)

Let u ∈ H, consider the expression∫ b

a

|u|2ωdx =⟨u, u⟩w = ⟨
∑
n

unfn(x),
∑
m

umfm(x)⟩w

=
∑
n,m

u∗num⟨fn, fm⟩w =
∑
n,m

u∗numδnm =
∑
n

|un|2
(106)

which is Parseval’s identity in the case with a weight function w(x)

⟨u, u⟩w =
∑
n

|un|2 (107)

3.2.5 Green Functions Revisited

If {yn} are a set of orthonormal eigenfunctions of self-adjoint operator L with weight
w with corresponding eigenvalues {λn}, then the Green function for L is given by

G(x, x̃) =
∑
n

yn(x)y
∗
n(x̃)

λn
, λn ̸= 0 (108)
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Proof.

Lx[G(x, x̃)] =
∑
n

Lx[yn(x)]y
∗
n(x̃)

λn

=
∑
n

w(x)yn(x)y
∗
n(x̃)

=
ω(x)

ω(x̃)

[
ω(x̃)

∑
n

yn(x)y
∗
n(x̃)

]
=δ(x− x̃)

(109)

□

3.2.6 Eigenfunction Expansions for Solving ODEs

As an example, consider the differential equation

Ly − νy = f (110)

with some boundary conditions. L is a self-adjoint operator with weight function
w = 1 and {yn} are eigenfunctions. Suppose L has eigenvalues λn, and correspond-
ing eigenfunctions {yn}, satisfying the same boundary conditions. Let

y(x) =
∑
n

anyn(x), f(x) =
∑
n

fnyn(x) (111)

Substituting into the original equation, we find

L
∑
n

anyn − ν
∑
n

anyn =
∑
n

(anλn − νan)yn =
∑
n

fnyn (112)

So that
an =

fn
λn − ν

, (λn ̸= ν) (113)

so that the solution is given by

y(x) =
∑
n

fn
λn − ν

yn(x) =
∑
n

⟨yn, f⟩
λn − ν

yn(x)

=

∫ b

a

dx′
∑
n

yn(x)y
∗
n(x

′)

λn − ν
f(x′)

=

∫ b

a

dx′G(x, x′)f(x′)

(114)

hence the Green function of the problem as

G(x, x′) =
∑
n

yn(x)y
∗
n(x

′)

λn − ν
(115)

Note that if ν = λn, for any n, then there is no Green function.
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3.3 Legendre Polynomials

3.3.1 Examples

Example. The two examples differ only by boundary conditions.

(1) Let

L = − d2

dx2
, x ∈ [0, 2πR] (116)

with boundary conditions y(0) = y(2πR) = 0. Then the eigenfunction equation
becomes

−y′′n = λnyn (117)

and the eigenfunctions and the corresponding eigenvalues are

yn = sin
( n

2R
x
)
, λn =

( n

2R

)2
, n = 1, 2, 3, · · · (118)

(2) Let

L = − d2

dx2
, x ∈ [0, 2πR] (119)

with boundary conditions y(0) = y(2πR) and y′(0) = y′(2πR).

−y′′m = λmym (120)

and the eigenfunctions and the corresponding eigenvalues are

ym = exp
(
i
m

R
x
)
, λm =

( m
2R

)2
, m ∈ Z (121)

When m = 0, there’s the extra ‘zero mode’ of y0 is a constant with eigenvalue 0.

3.3.2 Legendre’s Equation

Legendre’s equation

(1− x2)y′′ − 2xy′ + l(l + 1)y = 0 with x ∈ [−1, 1] (122)

arises is a number of contexts in science, for example in the solution of Laplace’s
equation in spherical coordinates. This equation can be put into the form of a self-
adjoint eigenvalue problem with ρ = 1− x2, σ = 0, w = 1 and λ = l(l + 1).

− d

dx

[
(1− x2)y′

]
= l(l + 1)y (123)

or
Ly = l(l + 1)y (124)
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where

L = − d

dx

[
(1− x2)

d

dx

]
(125)

is self-adjoint on a Hilbert space of functions that are finite at ±1. Assume that
eigenfunctions of eqn.(123) are polynomials

yn(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 (126)

Substituting the polynomial solution yn into eqn.(123), then thinking about equation
coefficients of partial of x. The highest power n satisfies the relation

n(n+ 1) = λ (127)

So eigenvalues take form
λ = l(l + 1), l ∈ N (128)

and can label eigenfunctions by l

• l = 0, y0(x) = 1

• l = 1, y1(x) = x+ a0

• l = 2, y2(x) = x2 + a1x+ a0

They are orthogonal with each other∫ 1

−1

y∗l (x)yl′(x) = δll′ (129)

3.4 Spherical Harmonics

Laplace’s equation in spherical coordinates is given by

∇2f(r, θ, ϕ) =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin θ

∂2f

∂ϕ2
(130)

Ansatz
f(r, θ, ϕ) = rleimϕΘ(θ) (131)

where l ∈ N and m ∈ Z, then Laplace’s equation becomes

l(l + 1)eimϕΘ(θ) +
eimϕ

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− Θ

sin θ
m2eimϕ = 0 (132)

Rearrange this, we have

sin2 θl(l + 1) +
sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
= m2 (133)

Let u = cos θ and Θ(θ) = P (u), where u ∈ [−1, 1], we have

d

dθ
=

d

du

du

dθ
= − sin θ

d

du
(134)
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Then the equation becomes self-adjoint form

−[(1− u2)P ′]′ +
m2

1− u2
P = l(l + 1)P (135)

with ρ = 1 − u2, σ = m2

1−u2 , w = 1 and λ = l(l + 1). Now the differential operators
depend on m, and there will be a different set of indefinite solutions for each m. This
can show that we get non-singular solutions if l ∈ N and m ∈ [−l, l]. The solutions
are called associated Legendre polynomials Pm

l (u), which is a basis set for functions
of u on [−1, 1]. Check the orthogonality∫ 1

−1

Pm
l (u)Pm

l′ (u)du =
2(l +m)!

(2l + 1)(l −m)
δll′ (136)

Similarly, the equation can be expressed as

−[(1− u2)P ′]′ − l(l + 1)P = − m2

1− u2
P (137)

with ρ = 1− u2, σ = −l(l + 1) and w = 1
1−u2 . This shows that∫ 1

−1

Pm
l (u)Pm′

l (u)

1− u2
du =

(l +m)!

m(l −m)
δmm′ (138)

Finally we get

Y m
l = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ, l ∈ N, −l ≤ m ≤ l (139)

they are solutions of ∇2Y m
l = 0, and form an orthogonal basis of function on S2

δll′δmm′ =

∫ 2π

0

∫ π

0

Y m
l (θ, ϕ)Y m′

l′ (θ, ϕ) sin θdθdϕ (140)

So any function f can be expressed as

f(θ, ϕ) =
∑
l

l∑
m=−l

flmY
m
l (θ, ϕ) (141)

where
flm =

∫
S2

Y ∗m
l fdΩ (142)
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4 Integral Transforms

4.1 Fourier Series

Consider f(x) has a period of 2πR, we can express f(x) as

f(x) =
∞∑

n=−∞

fnyn(x), fn ∈ C (143)

We choose the Fourier basis

yn(x) =
1√
2πR

einx/R (144)

with the orthogonality

⟨yn, ym⟩ =
∫ 2πR

0

y∗nymdx = δnm (145)

We choose x ∈ [−πR, πR], then

fn =

∫ πR

−πR

y∗n(x)f(x)dx

=
1√
2πR

∫ πR

−πR

e−inx/Rf(x)dx

=
1√
2πR

∫ πR

−πR

e−iknxf(x)dx

(146)

here kn = n/R, x ∈ (−∞,∞). Let R → ∞ and kn take the real continuous values
from −∞ to ∞, we define that

f̃(k) =
1√
2π

∫ ∞

−∞
e−ikxf(x)dx (147)

f satisfies
∫∞
−∞ |f |dx is finite. f̃(k) is the Fourier transform of f(x).

4.2 Fourier Transforms

4.2.1 Definition and Notation

Definition. The Fourier transform is defined as

f̃(k) =
1√
2π

∫ ∞

−∞
f(x)e−ikxdx (148)

The inverse Fourier transform is defined as

f(x) =
1√
2π

∫ ∞

−∞
f̃(k)eikxdk (149)

In other words, this operation on f̃(k) is the inverse Fourier transform and we can
define

F−1[F [f ]] = f ⇒ F−1F = 1 (150)
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4.2.2 Dirac Delta-Function

f(x) =
1√
2π

∫ ∞

−∞
f̃(k)eikxdk

=
1√
2π

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
f(x′)e−ikx′

dx′
]
eikxdk

=

∫ ∞

−∞
f(x′)

[
1

2π

∫ ∞

−∞
eik(x−x′)dk

]
dx′

=

∫ ∞

−∞
f(x′)δ(x− x′)dx′

(151)

where we have defined the Dirac delta-function

δ(x− x′) =
1

2π

∫ ∞

−∞
eik(x−x′)dk (152)

4.2.3 Properties of the Fourier Transform

1. If f(x) is a real function, i.e., [f(x)]∗ = f(x), then

f̃ ∗(k) =
1√
2π

∫ ∞

−∞
e−i(−k)xf ∗(x)dx = f̃(−k) (153)

If f(x) is an even function f(−x) = f(x), then f̃(x) is a pure real function.

Proof. Define y = −x, then

f̃ ∗(k) =
1√
2π

∫ ∞

−∞
e−ikyf(−y)d(−y) = 1√

2π

∫ ∞

−∞
e−ikyf(y)dy = f̃(k) (154)

□

If f(x) is an off function f(−x) = −f(x), then f̃(x) is a pure imaging function.

Proof. Define y = −x, then

f̃ ∗(k) =
1√
2π

∫ ∞

−∞
e−ikyf(−y)d(−y) = − 1√

2π

∫ ∞

−∞
e−ikyf(y)dy = −f̃(k) (155)

□

2. Differentiation
F [f (n)(x)] = (ik)nf̃(k) (156)

Proof. Consider the first order derivative

F [f ′(x)] =
1√
2π

∫ ∞

−∞
dxe−ikxf ′(x)

=
1√
2π

[
f(x)e−ikx

]∞
−∞ − 1√

2π

∫ ∞

−∞
dxf(x)(−ik)e−ikx

=ikf̃(k)

(157)

Repeat the process so we can prove the relation. □
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3. Multiplication by x

F [xf(x)] = i
d

dx
f̃(k) (158)

F [xnf(x)] =

(
i
d

dx

)n

f̃(k) (159)

4. Rigid shift of coordinate

F [f(x− a)] = e−ikaf̃(k) (160)

Proof. Define y = x− a, then

F [f(x− a)] =
1√
2π

∫ ∞

−∞
e−ikxf(x− a)dx

=
1√
2π

∫ ∞

−∞
e−ikae−ik(x−a)f(x− a)d(x− a)

=
1√
2π

e−ika

∫ ∞

−∞
e−ikyf(y)dy = e−ikaf̃(k)

(161)

□

4.2.4 Parseval’s Theorem

Parseval’s theorem for Fourier transforms states that∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
|f̃(k)|2dk (162)

Proof. ∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
f(x)f ∗(x)dx

=
1

2π

∫ ∞

−∞

[∫ ∞

−∞
dk

∫ ∞

−∞
dk′f̃(k)f̃ ∗(k′)ei(k−k′)x

]
dx

=

∫ ∞

−∞
dk

∫ ∞

−∞
dk′f̃(k)f̃ ∗(k′)

[
1

2π

∫ ∞

−∞
ei(k−k′)xdx

]
=

∫ ∞

−∞

∫ ∞

−∞
f̃(k)f̃ ∗(k′)δ(k − k′)dkdk′

=

∫ ∞

−∞
f̃(k)f̃ ∗(k)dk =

∫ ∞

−∞
|f̃(k)|2dk

(163)

□
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4.2.5 Convolution Theorem

Theorem.

(f ∗ g)(x) =
∫ ∞

−∞
f(y)g(x− y)dy (164)

is the convolution of f and g. We claim that

1. f ∗ g = g ∗ f

2. f ∗ δ = f

The convolution theorem can be stated in two, equivalent forms.

(1) The Fourier transform of a convolution is the product of the Fourier transforms.

F(f ∗ g) =
√
2πf̃(k)g̃(k) (165)

Proof.

F [f ∗ g] = 1√
2π

∫ ∞

−∞
dxe−ikx

∫ ∞

−∞
dyf(y)g(x− y)

=

∫ ∞

−∞
dye−ikyf(y)

1√
2π

∫ ∞

−∞
d(x− y)e−ik(x−y)g(x− y)

=

∫ ∞

−∞
dye−ikyf(y)g̃(k) =

√
2πf̃(k)g̃(k)

(166)

□

(2) The Fourier tranform of a product is the convolution of the Fourier transforms.

F [f(x)g(x)] =
1√
2π
f̃(k) ∗ g̃(k) (167)

Proof.

F [f(x)g(x)] =
1√
2π

∫ ∞

−∞
dxe−ikxf(x)g(x)

=
1√
2π

∫ ∞

−∞
dxe−ikx 1√

2π

∫ ∞

−∞
dpeipxf̃(p)

1√
2π

∫ ∞

−∞
dqeiqxg̃(q)

=
1√
2π

∫ ∞

−∞

∫ ∞

−∞
dpdqf̃(p)g̃(q)

[
1

2π

∫ ∞

−∞
dxe−i(k−p−q)x

]
=

1√
2π

∫ ∞

−∞

∫ ∞

−∞
dpdqf̃(p)g̃(q)δ(k − p− q)

=
1√
2π

∫ ∞

−∞
dpf̃(p)g̃(k − p)

=
1√
2π
f̃(k) ∗ g̃(k)

(168)

□
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4.2.6 Examples of Fourier Transform

1. Constant function f(x) = 1

f̃(k) =
1√
2π

∫ ∞

−∞
e−ikxdx =

√
2πδ(k) (169)

2. Single frequency/wavenumber mode f(x) = eik0x

f̃(k) =
1√
2π

∫ ∞

−∞
eik0xe−ikxdx =

√
2πδ(k − k0) (170)

3. Dirac delta-function f(x) = δ(x− x0)

f̃(k) =
1√
2π

∫ ∞

−∞
δ(x− x0)e

−ikxdx =
1√
2π

e−ikx0 (171)

4. Gaussian function f(x) = 1
σ(2π)1/4

e−x2/4σ2

f̃(k) =
1√
2π

1

σ(2π)1/4

∫ ∞

−∞
e−x2/4σ2

e−ikxdx

=
1√
2π

1

σ(2π)1/4

∫ ∞

−∞
exp

(
− x2

4σ2
− ikx

)
dx

=
1√
2π

1

σ(2π)1/4

∫ ∞

−∞
exp

[
− 1

4σ2
(x+ ik2σ)2 − k2σ2

]
dx

=
1√
2π

1

σ(2π)1/4
e−k2σ2

∫ ∞

−∞
exp

[
− 1

4σ2
(x+ ik2σ)2

]
dx

=
1√
2π

1

σ(2π)1/4
e−k2σ2

∫ ∞

−∞
exp

(
− 1

4σ2
x′

2

)
dx′

=

√
2σ

(2π)
1
4

e−k2σ2

(172)

5. Top-hat function f(x) =

{
1 |x| < a

0 |x| ≥ a

f̃(k) =
1√
2π

∫ a

−a

e−ikxdx =
1√
2π

[
− 1

ik
e−ikx

]a
−a

=

√
2

π

sin(ka)

k
= a

√
2

π
sinc(ak)

(173)
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f̃(k)

k

f(x)

x
−a a

(a) (b)

Figure 2: Top-hat function.

4.3 The Applications of Fourier Transforms in Physics

4.3.1 Diffraction Through an Aperture

The geometry for Fraunhofer diffraction see Fig.3(a). For small values of θ we have
θ ≈ sin θ ≈ tan θ = X

D
. The aperture function is given by a top-hat

h(x) =

{
1 |x| < a

2

0 |x| ≥ a
2

(174)

so we have

h̃(k) =
a√
2π

sinc
(
ak

2

)
(175)

The intensity I(k) of light observed in the diffraction pattern is the square of the
Fourier transform of the aperture function f(x)

I(x = X) = I

(
kx =

2πX

λD

)
= |h̃(kx)|2 =

a2

2π
sinc2

(
aπX

2λD

)
(176)

λ

aperture screen

θ

D

X

(a) (b)

a

d

aperture screen

θ

D

X

Figure 3: Geometry for Fraunhofer diffraction. (a) Diffraction through an aperture. (b)
Double slit diffraction.
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4.3.2 Double Slit Diffraction

The aperture function is given by

h(x) = f(x)g(x) (177)

where

f(x) = δ

(
x− d

2

)
+ δ

(
x+

d

2

)
(178)

and g(x) is single aperture function. And

f̃(k) =
1√
2π

∫ ∞

−∞
dxe−ikx

[
δ

(
x− d

2

)
+ δ

(
x+

d

2

)]
=

1√
2π

(
e−ikd/2 + eikd/2

)
=

√
2

π
cos

(
kd

2

) (179)

so we have
F(f ∗ g) =

√
2πf̃(k)g̃(k)

=
√
2π

√
2

π
cos

(
kd

2

)
a√
2π

sinc
(
ak

2

)
=

√
2

π
asinc

(
ak

2

)
cos

(
kd

2

) (180)

and the intensity on the screen is given by

I(k) =
2a2

π
sinc2

(
ak

2

)
cos2

(
kd

2

)
(181)

4.3.3 Diffusion Equation

Consider an infinite, one-dimensional conducting bar. The flow of heat is determined
by the diffusion equation

∂θ

∂t
= D

∂2θ

∂x2
(182)

where θ is the heat distribution. The boundary conditions on this problem is θ(±∞, t =
0) and θ(x, t = 0) = δ(x).

∂

∂t
θ̃(k, t) = D(ik)2θ̃(k, t) = −Dk2θ̃(k, t) (183)

the solution is

θ̃(k, t) = θ̃(k, 0)e−Dk2t = F [δ(x)]e−Dk2t =
1√
2π

e−Dk2t (184)
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So we have

θ(x, t) =
1

2π

∫ ∞

−∞
dkeikxe−Dk2t

=
1

2π

∫ ∞

−∞
dk exp

[
−Dt

(
k − ix

2Dt

)2

− x2

4Dt

]
dk

=
1

2π
e−x2/4Dt

∫ ∞

−∞
e−Dtq2dq

=
1

2π

√
π

Dt
e−x2/4Dt

(∫ ∞

−∞
e−αx2

dx =

√
π

α

)
(185)

Hence the final result
θ(x, t) =

1

2
√
πDt

e−x2/4Dt (186)

4.4 Laplace Transforms

Laplace transforms is useful for initial value problem where f(t) only exists for t ≥ 0.

L[f(t)] = f̂(s) =

∫ ∞

0

dte−stf(t) (187)

where s is a complex variable and Re(s) > 0 is required for the convergence of the
integral.

4.4.1 Properties

(1)
L[f ′(t)] = sf̂(s)− f(0) (188)

Proof.
L[f ′(t)] =

∫ ∞

0

dte−stf ′(t)

=e−stf(t)
∣∣∞
0
+ s

∫ ∞

0

dte−stf(t) = sf̂(s)− f(0)

(189)

□

More generally

L[f (n)(t)] = snf̂(s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0) (190)

(2)

L[tnf(t)] = (−1)n
dn

dsn
f̂(s) (191)
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Proof.

(−1)n
dn

dsn
f̂(s) =(−1)n

dn

dsn

∫ ∞

0

dte−stf(t) = (−1)n
∫ ∞

0

dt(−t)ne−stf(t)

=

∫ ∞

0

dte−sttnf(t) = L[tnf(t)]
(192)

□

Example. Consider the differential equation

f ′′ + 5f ′ + 6f = 0 (193)

with boundary conditions f ′(0) = f(0) = 0. Apply the Laplace transform on the
equation, we have

s2f̂(s)− sf(0)− f ′(0) + 5[sf̃(s)− f(0)] + 6f̃(s) = f̃(s)(s2 + 5s+ 6) =
1

s
(194)

rearranging this, we have

f̃(s) =
1

s(s+ 2)(s+ 3)
=

1

6s
− 1

2(s+ 2)
+

1

3(s+ 3)
(195)

So
f(t) =

1

6
− 1

2
e−2t +

1

3
e−3t (196)

4.4.2 Convolution Theorem for Laplace Transforms

A convolution of two functions f1(t) and f2(t) is defined as

f1 ∗ f2 =
∫ ∞

−∞
f1(t

′)f2(t− t′)dt′ (197)

If f1 and f2 vanish for t < 0, then

f1 ∗ f2 =
∫ t

0

f1(t
′)f2(t− t′)dt′ (198)

Theorem.
The convolution theorem for Laplace transforms

L[f1 ∗ f2] = f̃1(s)f̃2(s) (199)

Proof.

L[f1 ∗ f2] =
∫ ∞

0

dte−st

∫ t

0

f1(t
′)f2(t− t′)dt′

=

∫ ∞

0

dt′f1(t
′)

∫ ∞

t′
dte−stf2(t− t′)

=

∫ ∞

0

dt′e−st′f1(t
′)

∫ ∞

t′
dte−s(t−t′)f2(t− t′)

=f̃1(s)f̃2(s)

(200)

□
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5 Complex Analysis

5.1 Complex Functions of a Complex Variable

A complex number z = x+ iy can be mapped to another complex number

w = f(z) = u(x, y) + iv(x, y) (201)

where u(x, y) and v(x, y) are real functions of the real variables x and y.

It is often useful to use the ‘polar representation’ of complex numbers where

z = reiθ (202)

where r = |z| =
√
x2 + y2 is called the modulus of z and θ = arg(z) is called the

argument of z. arg(z) can be made unambiguous by a choice of ‘branch’. We will
write the principal branch as Arg(z), which is values −π < Arg(z) ≤ π.

Example.

(1) f(z) = |z| =
√
x2 + y2

(2) f(z) = 1
z
= 1

x+iy
= x

x2+y2
− i y

x2+y2

(3) f(z) = z3 = (x+ iy)3 = (x3 − 3xy2) + i (3x2y − y3)

(4) f(z) = z1/3 = r1/3e(iθ+2πin)/3 =


r1/3 exp

(
iθ
3

)
r1/3 exp

(
iθ
3
+ 2πi

3

)
r1/3 exp

(
iθ
3
+ 4πi

3

)
Complex functions defined as power series

ez = 1 + z +
z2

2!
+
z3

3!
+ · · · (203)

cos z = 1− z2

2!
+
z4

4!
− · · · (204)

ln(1 + z) = z − z2

2
+
z3

3
− · · · (|z| < 1) (205)

5.2 Continuity, Differentiability and Analyticity

5.2.1 Definitions

Definition. f(z) is continuous at z = z0 if ∀ε > 0, there exists a δ > 0, such that, if
|z − z0| < δ then |f(z)− f(z0)| < ε. We also say

lim
z→z0

f(z) = f(z0) (206)

33



5.2 Continuity, Differentiability and Analyticity 5 COMPLEX ANALYSIS

Definition. f(z) is differentiable at z = z0 if ∃F ∈ C such that

lim
z→z0

f(z)− f(z0)

z − z0
= F (207)

we say f ′(z0) = (df/dz)
∣∣
z0
= F .

Definition. A subset D ∈ C is open if for every z ∈ D, there is an open disc centred at
z entirely contained in D.

Definition. A function f(z) is analytic at z0 if f(z) is differentiable everywhere in an
open domain containing z0; if f(z) is NOT analytic at z0 we say f(z) is singular at z0.

Example. f(z) = z2 and z = z0 + δz

lim
δz→0

(z0 + δz)2 − z20
δz

= 2z0 (208)

f(z) = z2 is differentiable everywhere in C. So we say f(z) is analytic in C and f(z)
is entire.

Example. f(z) = z∗ = x− iy and z = z0 + δz

lim
δz→0

(z0 + δz)∗ − z∗0
δz

= lim
δz→0

δz∗

δz
= e−2iθ (209)

f(z) = z∗ is not differentiable anywhere so f(z) is not analytic in C.

Trick. If f(z) has an experience including z only if it will be analytic; If f(z) has an
experience including z∗, then it wouldn’t be analytic.

5.2.2 The Cauchy-Riemann Conditions

In this section we ask: under what conditions is a complex function f(z) = u(x, y) +
iv(x, y) analytic in a domain D?

Let us assume that ∂u
∂x
, ∂u
∂y
, ∂v
∂x
, ∂v
∂y

all exist in D, i.e., f(z) is analytic in D.

∂f

∂x
=

df

dz

∂z

∂x
= f ′,

∂f

∂y
=

df

dz

∂z

∂y
= if ′ (210)

which shows

i
∂f

∂x
=
∂f

∂y
⇒ i

(
∂u

∂x
+ i

∂v

∂x

)
=

(
∂u

∂y
+ i

∂v

∂y

)
(211)

Rearranging this, now we get the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
(212)
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Theorem.
f(z) is analytic if and only if Cauchy-Riemann equations hold in D.

Example. f(z) = z2 = (x+ iy)2 = (x2 − y2) + 2ixy. In this function, u = x2 − y2 and
v = 2xy.

∂u

∂x
= 2x,

∂u

∂y
= −2y (213)

∂v

∂x
= 2y,

∂v

∂y
= 2x (214)

satisfy the C-R equations.

Example. f(z) = x = (z + z∗)/2. In this function, u = x and v = 0, so we have

∂u

∂x
= 1 ̸= ∂v

∂y
= 0 (215)

C-R equations fail.

Example. f(z) = x2 + y2 = zz∗ with u = x2 + y2 and v = 0.

∂u

∂x
= 2x,

∂u

∂y
= 2y,

∂v

∂x
=
∂v

∂y
= 0 (216)

So f(z) satisfies C-R equations at x = y = 0 but nowhere else.

Theorem.
f(z) is analytic at z = z0 if and only if f(z) has a power series expansion around
z = z0 that converges in an open neighhood of z0.

f(z) = c0 + c1(z − z0) + c2(z − z0)
2 + · · · =

∞∑
k=0

ck(z − z0)
k (217)

where ck = f (k)(z0)/k!, in a neighbourhood of z0, for every z0 in D.

Example. List of analytic functions: ez, cos z, sin z, sinh z, cosh z, ln(1 + z), P (z)
Q(z)

where
P and Q are polynomials in z (everywhere except at the zeros of Q).

5.2.3 Harmonic Functions

Definition. g(x, y) is harmonic if ∇2g = 0.

Now we look at C-R equations

∂2u

∂x2
=

∂

∂x

∂u

∂x
=

∂

∂x

∂v

∂y
=

∂

∂y

∂v

∂x
= − ∂

∂y

∂u

∂y
= −∂

2u

∂y2
(218)
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Hence
∂2u

∂x2
+
∂2u

∂y2
= ∇2u = 0 (219)

u(x, y) is harmonic. Similarly, v(x, y) is harmonic. We conclude that if f = u + iv is
analytic, u and v are conjugate harmonic functions.

Example. Consider the real function u(x, y) = cos x cosh y

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= − cosx cosh y + cosx cosh y = 0 (220)

hence u is harmonic. Then we find the conjugate harmonic function v(x, y). Using
the C-R equations

∂v

∂y
=
∂u

∂x
= − sinx cosh y ⇒ v = − sinx sinh y + c1(y) (221)

∂v

∂x
= −∂u

∂y
= − cosx sinh y ⇒ v = − sinx sinh y + c2(x) (222)

so that c1 = c2 = c and v(x, y) = − sinx sinh y + c, where c is a constant. Hence

f(z) = cos x cosh y − i sinx sinh y + c̃ (223)

is analytic by construction.

5.3 Multi-Valued Functions

Example. f(z) = z1/3. There are three related branches of z1/3
F1(z) = r1/3eiθ/3

F2(z) = r1/3eiθ/3+2πi/3

F3(z) = r1/3eiθ/3+4πi/3

(224)

with θ ∈ (−π, π]. Each one is single valued, but discontinuous along the negative
real axis. If we glue sheets together on the branch cuts, then the three sheets form
a Riemann surface. f(z) = z1/3 is defined on the Riemann surface on the following
way

f(z) = Fi(z) on sheet i (225)

f(z) is single valued and continuous on the Riemann surface.

Example. f(z) = z1/2 has 2 branches and 2 Riemann sheets.

Example. f(z) = z1/n has n branches and n Riemann sheets.

Example. f(z) = ln z = ln
(
reiθ
)

not defined at z = 0.

f(z) = ln r + iθ + 2πin (226)
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has one branch for each integer n.

Example. f(z) = (z − z0)
1/3. A branch point is a point that cannot be encircled

without moving on to a different sheet of the Riemann surface of f(z).

Example. f(z) = (z − a)1/2(z − b)1/2, a, b ∈ R. The function has two branch points a
and b, the branch cuts must begin or end there (see in Fig.4).

a b ba

Figure 4: The two possible ways to place branch cuts for f(z) = (z − a)1/2(z − b)1/2,
and they form the same Riemann surface.

5.4 Integration of Complex Functions

5.4.1 Contours

We focus on contour integrals,
∫
C
f(z)dz, along lines or paths C in the complex plane.

Example. Evaluate
∫
c
zdz along (i) y = x2 and (ii) y = x.∫

C

zdz =

∫
C

(x+ iy)(dx+ idy) =

∫
C

(xdx− ydy) + i

∫
C

(ydx+ xdy) (227)

(i)
∫ 1

0
(xdx− 2x3dx) + i

∫ 1

0
(x2dx+ 2x2dx) = i

(ii)
∫ 1

0
(xdx− xdx) + i

∫ 1

0
(xdx+ xdx) = i

(i)

(ii)

x

y

1

1

Figure 5: The two paths, (i) y = x2 and (ii) y = x, along with the function f(z) is to be
integrated in the example.
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5.4.2 Cauchy’s Theorem

Theorem.
(Cauchy’s theorem) If f(z) is analytic everywhere on and within a closed contour C∮

C

f(z)dz = 0 (228)

Theorem.
(Green’s theorem in the plane) P and Q are functions of x and y, and C is a closed
contour in the x− y plane, then∮

C

(Pdx+Qdy) =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dxdy (229)

Proof. Use Green’s theorem in the plane and Cauchy-Riemann conditions to prove
Cauchy’s theorem.∮

C

f(z)dz =

∮
C

(u(x, y) + iv(x, y))(dx+ idy)

=

∮
C

(udx− vdy) + i

∮
C

(vdx+ udy)

=

∫∫
D

(
−∂v
∂x

− ∂u

∂y

)
dxdy + i

∫∫
D

(
∂u

∂x
− ∂v

∂y

)
dxdy = 0

(230)

□

5.4.3 Path Independence

Theorem.
Let C1 and C2 be two contours from za to zb. If f(z) is analytic on C1 and C2 and the
region between them, then ∫

C1

f(z)dz =

∫
C2

f(z)dz (231)

Proof. Consider closed contour C = C1 − C2. By Cauchy’s theorem∮
C

f(z)dz =

∫
C1

f(z)dz −
∫
C2

f(z)dz = 0 (232)

□
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5.4.4 Contour Deformation

Theorem.
If C1 and C2 are closed contours, and C1 can be defined into C2 entirely in a region
where f(z) is analytic, then ∮

C1

f(z)dz =

∮
C2

f(z)dz (233)

Proof. Choose line segment AB as shown in the Fig.6. Consider C = C1 + BA −
C2 + AB. By Cauchy’s theorem∮

C

f(z)dz =

(∫
C1

+

∫
BA

−
∫
C2

+

∫
AB

)
f(z)dz

=

∫
C1

f(z)dz −
∫
C2

f(z)dz = 0

(234)

□

A

B

C1
C2

Figure 6: The constructed contour C1 and C2 for the proof of contour deformation.

Example. Evaluate
∮
C

1
z
dz, where C is a closed contour around the original point.

Deform the contour into a small circle, radius r = 1, centred on the origin

z = eiθ, dz = ieiθdθ (235)

then ∮
C

1

z
dz =

∮
|z|=1

1

z
dz =

∫ π

−π

e−iθieiθdθ = 2πi (236)

5.4.5 Cauchy’s Integral Theorem

Theorem.
If f(z) is analytic within and on a closed contour C and z0 is any point within C,
then ∮

C

f(z)

z − z0
dz = 2πif(z0) (237)
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or

f(z0) =
1

2πi

∮
C

f(z)

z − z0
dz (238)

Proof. The integral is analytic within and on C except at z = z0. Let Cr be a small
circle around z0, i.e. Cr : z = z0 + reiθ(r → 0), then∮

C

f(z)

z − z0
dz = lim

r→0

∮
Cr

f(z)

z − z0
dz = lim

r→0

∫ 2π

0

f(z0 + reiθ)

reiθ
ireiθdθ

= lim
r→0

i

∫ 2π

0

f(z0 + reiθ)dθ = 2πif(z0)

(239)

□
Example. Consider the integral∮

sin z

z2 + 1
dz =

∮
C

sin z

(z + i)(z − i)
dz (240)

and consider the closed contour (1) C and (2) C̃.

C̃

C

i

−i

Figure 7: The contour C and C̃ for the example.

(1) For the contour C, We choose

f(z) =
sin z

z + i
(241)

Then ∮
C

sin z

z2 + 1
dz =

∮
C

f(z)

z − i
dz = 2πi

sin i

2i
= πi sinh 1 (242)

(2) C̃ is a circle of radius 2 centred at origin, so∮
C̃

sin z

z2 + 1
dz =

∮
C̃

sin z

(z + i)(z − i)
dz =

i

2

∮
C̃

(
sin z

z + i
− sin z

z − i

)
dz

=− π(sin(−i)− sin(i)) = 2πi sinh 1

(243)
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5.4.6 Derivatives of Analytic Functions

Cauchy’s integral theorem gives

f(z0) =
1

2πi

∮
C

f(z)

z − z0
dz (244)

If we differentiate both sides of Cauchy’s integral formula with respect to z0, inter-
changing the orders of integration and differentiation, we get

f ′(z0) =
1

2πi

∮
C

f(z)

(z − z0)2
dz (245)

Similarly,

f ′′(z0) =
2!

2πi

∮
C

f(z)

(z − z0)3
dz (246)

...

f (n)(z0) =
n!

2πi

∮
C

f(z0)

(z − z0)n+1
dz (247)

Example. Consider the integral

I =

∮
C

1

zn
dz =

∮
C

f(z)

zn+1
dz with C : |z| = r (248)

with f(z) = z, f ′(z) = 1 and f (n)(z) = 0(n ≥ 2).

• n = 1, I = 2πif(0) = 2πi

• n ≥ 2, I = 2πi
n!
f (n)(0) = 0

5.4.7 Fourier Transform of a Gaussian

We have known that ∫ ∞

−∞
e−x2

dx =

∫ ∞

−∞
e−(x′+ia)2dx′ (249)

where a is a real number. Now we use Cauchy’s theorem to prove it.
Proof.

I1 =

∫ ∞

−∞
e−x2

dx =

∫
C1

e−z2dz (250)

I2 =

∫ ∞

−∞
e−(x′+ia)2dx′ =

∫
C2

e−z2dz (251)

where C1 is the whole x-axis and C2 is the line parallel to the x-axis at z = x + ia.
Let’s assume a > 0. To begin with, we construct a closed contour CR = C1R + E+

R −
C2R + E−

R . And we have ∮
CR

e−z2dz = 0 (252)
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for any R. When R → ∞, then

lim
R→∞

∮
CR

e−z2dz = lim
R→∞

(∫
C1

+

∫
E+

R

−
∫
C2

+

∫
E−

R

)
e−z2dz = 0 (253)

Now
lim
R→∞

∫
E+

R

e−z2dz = lim
R→∞

∫ a

0

e−(R+iy)2idy = 0 (254)

lim
R→∞

∫
E−

R

e−z2dz = lim
R→∞

∫ 0

a

e−(−R+iy)2idy = 0 (255)

So we have I1 = I2. □

x

y

C1R

C2R E+
RE−

R

−R R

Figure 8: The contour CR.

5.5 Power Series Representations of Complex Functions

5.5.1 Taylor Series

f(z) is analytic at z0 if it has a Taylor series in a neighbourhood of z0

f(z) =
∞∑
n=0

an(z − zn)
2 (256)

where

an =
f (n)(z0)

n!
=

1

2πi

∮
C

f(z)

(z − z0)n+1
dz (257)

5.5.2 Singularities

If f(z) is analytic except at specific points in the complex plane, those points are
called isolated singularities or poles.

Example.

f(z) =
ez

(z − 5)(z + i)(z − (1 + i))2
(258)

has isolated singularities at z = 5, i, 1 + i.

There two types of singularities:
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1. f(z) has a pole of order m(m ≥ 1) at z0 if there exists a g(z) which is analytic
at z0 and g(z0) ̸= 0 s.t.

f(z) =
g(z)

(z − z0)m
(259)

This implies f(z) has a power series except around z0

f(z) =
∞∑
n=0

an(z − z0)
n +

m∑
n=1

bn
(z − z0)n

(260)

Poles of order 1 are called single poles.

2. f(z) has an essential singularity at z0 if f(z) has a power series except around
z = z0 with infinitely many negative powers

f(z) =
∞∑
n=0

an(z − z0)
n +

∞∑
n=1

bn
(z − z0)n

(261)

Example.

f(z) = e1/z =
∞∑
n=0

1

n!

(
1

z

)n

(262)

5.6 Contour Integration using the Residue Theorem

5.6.1 The Residue Theorem

Definition. Let f has an isolated singularity at z0, then the residue of f at z0 is

Resf (z0) =
1

2πi

∮
Cz0

f(z)dz (263)

where Cz0 is a closed contour s.t. z0 is inside and f(z) is analytic inside except at z0. If
f(z) has a pole of order m at z0, then

f(z) =
g(z)

(z − z0)m
(264)

and

Resf (z0) =
1

2πi

∮
C

g(z)

(z − z0)m
dz =

1

(m− 1)!

dm−1g(z)

dzm−1

∣∣∣∣
z=z0

(265)

Example.

(1) f(z) = 1/(z − z0)
Resf (z0) = 1 (266)
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(2) f(z) = sin z/(1 + z)2

Resf (−1) =
d sin z

dz

∣∣∣∣
z=−1

= cos(−1) = cos 1 (267)

Theorem.
(Residue Theorem) Let C is a closed contour, f(z) is a function that is analytic on C
and inside C except at z = z1, · · · , zN . Then∮

C

f(z)dz = 2πi
N∑
k=1

Resf (zk) (268)

Figure 9: The contour C used in the proof of the residue theorem.

Proof. Construct the closed contour C̃ = C−(C1+C2+C3). f(z) is analytic anywhere
inside C̃. By Cauchy’s theorem∮

C̃

f(z)dz =

∮
C

f(z)dz − 2πi
N∑
k=1

Resf (zk) = 0 (269)

□

5.6.2 Contour Integration Examples

Example.

(1)

I =

∮
|z|=1

e1/zdz =

∮
|z|=1

[
1 +

1

z
+

1

2!

(
1

z

)2

+ · · ·

]
dz = 2πi (270)

(2)

I =

∮
|z|=3

z + 2

2z2 + 1
dz =

∮
|z|=3

z + 2

2(z + i√
2
)(z − i√

2
)
dz

=2πi

[
Res

(
i√
2

)
+Res

(
− i√

2

)]
=2πi

[
i√
2
+ 2

2( i√
2
+ i√

2
)
+

− i√
2
+ 2

2(− i√
2
− i√

2
)

]
= πi

(271)
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(3)

I =

∫ ∞

−∞

dx

(x2 + 1)(x2 + 9)
(272)

Consider the contour C = CR + SR, see in Fig.10(a), we have

I = lim
R→∞

∫ R

−R

dx

(x2 + 1)(x2 + 9)
= lim

R→∞

∫
SR

dz

(z2 + 1)(z2 + 9)

= lim
R→∞

∮
C

dz

(z + i)(z − i)(z + 3i)(z − 3i)
− lim

R→∞

∫
CR

dz

(z2 + 1)(z2 + 9)

=2πi [Res(i) + Res(3i)]− lim
R→∞

iR

(R2 + 1)(R2 + 9)

∫ π

0

eiθdθ

=2πi

(
1

16i
+

1

−48i

)
=

π

12

(273)

x

y

CR

SR

(a)

x
ER

y

C1

x
ER

y

C2

(b)

Figure 10: (a) The contour for example (3). (b) The contour for example (4).

(4)

I =

∫ ∞

−∞

cosx

x2 + 1
dx =

∫
x−axis

cos z

z2 + 1
dz

=

∫
x−axis

eiz

2(z + i)(z − i)
dz +

∫
x−axis

e−iz

2(z + i)(z − i)
dz

=I1 + I2

(274)

Consider the closed contour C̃1 = C1 + ER and C̃2 = C2 − ER (see in fig.10(b))

I1 = lim
R→∞

∮
C̃1

eiz

2(z + i)(z − i)
dz − lim

R→∞

∫
C1

eiz

2(z + i)(z − i)
dz

=2πiRes(i)− lim
R→∞

∫ π

0

eiReiθ

2(R2 + 1)
iReiθdθ = 2πi

e−1

4i
− 0 =

π

2
e−1

(275)

I2 =− lim
R→∞

∮
C̃2

e−iz

2(z + i)(z − i)
dz + lim

R→∞

∫
C2

e−iz

2(z2 + 1)
dz

=− 2πiRes(−i) + lim
R→∞

∫ 0

−π

e−iReiθ

2(R2 + 1)
iReiθdθ

=− 2πi
e−1

−4i
+ 0 =

π

2
e−1

(276)
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So we have
I = I1 + I2 = πe−1 (277)

5.6.3 Jordan’s Lemma

Lemma. Consider
I(R) =

∫
CR

eiαzf(z)dz (278)

where α > 0 (α < 0) and CR is a semicircle of radius R in the upper (lower) half-
plane. Let M(R) be the maximum value of f(z) on CR. If M(R) → 0 as R → ∞, so
does I(R).

Proof. Consider the case α > 0 and CR is a semicircle of radius R in the upper
half-plane.

|I(R)| =
∣∣∣∣∫

CR

eiαzf(z)dz

∣∣∣∣ ≤ ∫
CR

|eiαz||f(z)||dz| (279)

At the point z = Reiθ on the contour, we have
|eiαz| = e−αy = e−αR sin θ

|f(z)| ≤M(R)

|dz| = Rdθ

(280)

so

|I(R)| ≤M(R)

∫ π

0

e−αR sin θRdθ = 2RM(R)

∫ π/2

0

e−αR sin θdθ

≤ 2RM(R)

∫ π/2

0

e−αR(2θ/π)dθ =
πM(R)

α
(1− e−αR) ≤ πM(R)

α

(281)

Thus, if M(R) → 0 as R → ∞, so dose I(R). □

5.6.4 Inverse Laplace Transforms

Suppose we know

F (s) = L[f(t)] =
∫ s

0

f(t)e−stdt (282)

and we want to find

f(t) = L−1[F (s)] =
1

2πi

∫ c+i∞

c−i∞
F (s)estds (283)

which is called Bromwich integral.To invert a Laplace transform F (s). There are steps
to help find the solution
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(1) Find the singular points a1, a2, · · · of F (s) and choose a real number c such that
c > Re(ai) for all i.

(2) Close the Bromwich integral contour show in Fig.11 with a large semicircle in
the left-hand half-plane.

(3) If the integral around the semicircle vanished as R → ∞, then

f(t) =
1

2πi

∫ c+i∞

c−i∞
F (s)estds =

∑
i

Res(ai)− lim
R→∞

∫
CR

F (s)estds (284)

where Res(ai) is the residues of F (s)est. Here we notice est = ext+iyt. As we close
the contour to the left, i.e., x→ −∞. So est → 0(t > 0). Hence

f(t) =
1

2πi

∫ c+i∞

c−i∞
F (s)estds =

∑
i

Res(ai), t > 0 (285)

Re(s)

c+ i∞

c− i∞

×

× ×

CR

Figure 11: The contour for inverting Laplace transforms.
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6 Calculus of Variations

6.1 Introduction

A function f maps a number, x, to another number, f(x)

x → f → f(x)

A functional I maps a function, f , to a number I[f ]

y(x) → I → I[y(x)]

Example.

(1) I[f ] = 1
b−a

∫ b

a
f(x)dx

(2) T (ψ) =
∫
ψ∗(x) p̂2

2m
ψ(x)dx

(3) U(ρ) = 1
2

∫∫ ρ(r)ρ(r′)
4πε0|r−r′|d

3rd3r′

(4) S[y] =
∫ b

a

√
1 + (dy

dx
)2dx = length of curve from x = a to x = b given by y(x).

(5) S[x] =
∫ t2
t1

[
1
2
mẋ2 − V (x)

]
dt = action.

Calculus is to find stationary points x0 of f(x)

f(x+ δx) = f(x) + δxf ′(x) +
(δx)2

2
f ′′(x) + · · · (286)

At a stationary point x = x0
f ′(x0) = 0 (287)

δf(x) = f(x+ δx)− f(x) = O(δx2) (288)

Calculus of variations is to find a stationary function of the functional I[y]

δI = I[y + δy]− I[y] (289)

Seek y = y0 such that
δI|y0 = O(δy2) (290)

6.2 Euler-Lagrange Problem

Let y be a function of variable y(x)

I[y] =

∫ xB

xA

f(x, y(x), y′(x))dx (291)

where f is a function of 3 arguments x, y, y′, and xA, xB, y(xA), y(xB) are fixed.
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Euler-Lagrange problem is to find y(x) such that δI = O(δy2) at y(x), and we say y
extremises I[y] or y is a stationary function of I or I is stationary at y.

Consider varying y(x) slightly

y(x) → y(x) + δy(x) (292)

then
I[y + δy] =

∫ xB

xA

f(x, y(x) + δy(x), y′ + δy′(x))dx

=

∫ xB

xA

[
f(x, y, y′) + δy

∂f

∂y
+ δy′

∂f

∂y′
+O(δy2)

]
dx

(293)

so we have

δI =I[y + δy]− I[y]

=

∫ xB

xA

(
δy
∂f

∂y
+ δy′

∂f

∂y′

)
dx+O(δy2)

=

∫ xB

xA

(
δy
∂f

∂y

)
dx+

[
δy
∂f

∂y′

]xB

xA

−
∫ xB

xA

δy
d

dx

(
∂f

∂y′

)
dx+O(δy2)

=

∫ xB

xA

δy

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
dx+O(δy2)

(294)

δI = O(δy2) if and only if
∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0 (295)

for xA ≤ x ≤ xB. This equation is called Euler-Lagrange equation.

Example.
f(x, y, y′) = (1 + x2)y′2 − y4 (296)

I[y] =
∫ xB

xA
f(x, y, y′)dx is stationary if y satisfies

−4y3 − d

dx

[
(1 + x2)2y′

]
= 0 (297)

We can also use the original method of calculus of variations

I[y + δy] =

∫ xB

xA

[
(1 + x2)(y′ + δy′)2 − (y + δy)4

]
dx (298)

so
δI =

∫ xB

xA

[
(1 + x2)2y′δy′ − 4y3δy

]
dx

=(1 + x2)2y′δy
∣∣xB

xA
−
∫ xB

xA

dx

(
δy

d

dx
[(1 + x2)2y′] + 4y3δy

)
dx

=

∫ xB

xA

dxδy

(
− d

dx
[(1 + x2)2y′]− 4y3

)
dx

(299)
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I is stationary if

− d

dx
[(1 + x2)2y′]− 4y3 = 0 (300)

6.2.1 Beltrami identity

Suppose f(x, y, y′)
df

dx
=
∂f

∂x
+
∂f

∂y

dy

dx
+
∂f

∂y′
dy′

dx
(301)

If y is a solution function of the Euler-Lagrange equation

df

dx
=
∂f

∂x
+ y′

d

dx

(
∂f

∂y′

)
+ y′′

∂f

∂y′

=
∂f

∂x
+

d

dx

(
y′
∂f

∂y′

) (302)

Suppose f has no explicit dependence on x, i.e., ∂f/∂x = 0, then

d

dx

(
f − ∂f

∂y′
y′
)

= 0 (303)

which integrates to

f − ∂f

∂y′
y′ = const (304)

This equation is called Beltrami identity, which is the first integral of Euler-Lagrange
equation.

Example.

I[y] =

∫
fdx with f(y, y′) = y′2 − y4 (305)

Applying the Beltrami identity

y′2 − y4 − 2y′2 = const (306)

6.2.2 Functional Derivatives

We know that

δI =

∫ xB

xA

δy

[
∂f

∂y
− d

dx

(
∂f

∂y′

)]
dx+O(δy2) (307)

then we can define the functional derivative of I with respect to y

δI

δy(x)
=
∂f

∂y
− d

dx

(
∂f

∂y′

)
(308)

then Euler-Lagrange equation can be written as3

δI

δy(x)
= 0 (309)

3Confer function derivative dy/dx = 0.
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6.2.3 Lagrangian Mechanics

The Lagrangian of a classical particle moving in three dimensions is

L = T − V =
1

2
mẋ2 + V (x, t) (310)

where x = (x1, x2, x3). The action

S[x(t)] =

∫ tB

tA

L(t,x, ẋ)dt (311)

Vary S[x] separately for x1, x2, x3 and get an Euler-Lagrange equation for each

∂L

∂xi
− d

dt

(
∂L

∂ẋi

)
= 0, i = 1, 2, 3 (312)

these give
mẍi = −∇iV, i = 1, 2, 3 (313)

which is Newton’s equation.

6.2.4 Examples

Example.

(1) Shortest Path Problem
(Method 1)
Between (x, y) and (x+ dx, y + dy) along curve y(x), the distance is

ds =
√

dx2 + dy2 =

√
1 +

(
dy

dx

)2

dx (314)

so the length of y(x) is ∫
ds =

∫ xB

xA

√
1 + y′2dx (315)

This extremised by Euler-Lagrange equation

0− d

dx

(
y′√

1 + y′2

)
= 0 ⇒ y′ = c ⇒ y = cx+ d (316)

(Method 2)
We write the curve in parametrised form

y = y(λ), x = x(λ) (317)

The curve fixed at λ = λA at (xA, yA) and λ = λB at (xB, yB). The length of path
is ∫

ds =

∫ √
dx2 + dy2 =

∫ λB

λA

√(
dx

dλ

)2

+

(
dy

dλ

)2

dλ (318)
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This extremised by Euler-Lagrange equation. For x

0− d

dλ

(
x′√

x′2 + y′2

)
= 0 ⇒ x′√

x′2 + y′2
= α (319)

Similarly, for y

0− d

dλ

(
y′√

x′2 + y′2

)
= 0 ⇒ y′√

x′2 + y′2
= β (320)

So we have
y′

x′
= γ ⇒ dy

dx
= γ ⇒ y = γx+ c (321)

(2) Brachistochrone
A particle moving from A(0, 0) to B(xB, yB) takes the time

T =

∫ B

A

dt =

∫ B

A

ds

v
=

∫ x=xB

x=0

√
1 + y′2√
2gy

dx (322)

Using the Beltrami identity

√
1 + y′2√
2gy

−
y′√
1+y′2√
2gy

y′ = c ⇒ y(1 + y′2) = c2 ⇒ y′ =

√
α− y

y
(323)

where α = c2. The solution is a cycloid4

x = x(θ) = a(θ − sin θ) (324)

y = y(θ) = a(1− cos θ) (325)

where a = α/2. Then we can find the total time along the cycloid from A to B
in terms of θB

T =

∫ θB

0

√
(dx/dθ)2 + (dy/dθ)2√

2gy
dθ =

∫ θB

0

√
a

g
dθ =

√
a

g
θB (326)

6.2.5 Symmetries and Conservation

• Conservation of energy
Consider a single particle in 1D space, and the potential doesn’t depend explic-
itly on time t. The Lagrangian

L(x, ẋ) = T − L =
1

2
mẋ2 − V (x) (327)

4Hint: suppose tanϕ =
√

y
α−y (−π/2 < ϕ < π/2).
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Using the Beltrami identity

L− ∂L

∂ẋ
ẋ = const (328)

which gives
1

2
mẋ2 + V = T + V

total energy
= const (329)

so we see that the V being independent of t leads to the conservation of total
energy.

More generally, for any mechanical system with position variables q

L(q, q̇) = T − V (q), q = (q1, q2, · · · , qN) (330)

which does not depend on t. If one defines

H = −L+
N∑
i=1

q̇i
∂L

∂q̇i
(331)

H is the classical Hamiltonian and the total energy. Then the Beltrami identity
tells us that this is a constant of the motion.

• Conservation of momentum
Consider a particle in 3D space. Suppose the potential V (x, ẋ, t) is independent
of x = (x1, x2, x3), i.e., there is no extended force in xi direction

∂V

∂xi
= 0, i = 1, 2, 3 (332)

The Lagrangian is also independent of x. The Euler-Lagrange equation gives

d

dt

(
∂L

∂ẋi

)
= 0 ⇒ mẋi = const (333)

which is the momentum of that particle in the xi direction.

• Conservation of angular momentum
Suppose q = (r(t), θ(t).ϕ(t)), then the Lagrangian for the particle is

L = T − V (r, θ, ϕ) (334)

where the kinetic energy

T =
1

2
m(ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2) (335)

We find that T doesn’t depend on ϕ. If V also doesn’t depend on ϕ, then the
Lagrangian doesn’t depend on ϕ.

d

dt

(
∂L

∂ϕ̇

)
=
∂L

∂ϕ
= 0 ⇒ mr2 sin2 θϕ̇ = const (336)

is a constant of the motion. This is the angular momentum in the z-direction.
If the potential V is a function of r alone, the system is spherically symmetric,
then all components of the angular momentum are conserved.
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6.3 Constrain Extremisation and Lagrange Multipliers

6.3.1 Constrained Extremisation of Functions

Consider the function f(x, y) and we want to find the stationary points of f subject
to the constraint

g(x, y)− C = 0 (337)

At the stationary point P , the contour of f(x, y) are parallel to the curve g(x, y) = C

∇f(P ) ∥ ∇g(P ) ⇒ ∇ (f(x, y)− λg(x, y))P = 0 (338)

The gradient ratio λ(̸= 0), is called a Lagrange multiplier.

Figure 12: An illustration of the method of Lagrange multipliers.

In d-dimension, with the function f(x1, · · · , xd) and more constraints

g1(x) = C1

g2(x) = C2

...
gk(x) = Ck

(339)

The constraint surface is d−k dimensional. f is extremised on the constraint surface
if

∇(f − λ1g1 − λ2g2 − · · · − λkgk) = 0 (340)
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Example. Find the minimum distance between curves xy = 1 and x + 2y = 1. Our
task is to minimise

√
(x2 − x1)2 + (y2 − y1)2, which is the same problem as minimis-

ing
f(x1, x2, y1, y2) = (x2 − x1)

2 + (y2 − y1)
2 (341)

Construct
u(x1, x2, y1, y2) = f(x1, x2, y1, y2) + λ1x1y1 + µ(x2 + 2y2) (342)

∇u = 0 gives
∂u

∂x1
= 2(x1 − x2) + λ1y1 = 0 (343)

∂u

∂x2
= 2(x2 − x1) + µ2 = 0 (344)

∂u

∂y1
= 2(y1 − y2) + λ1x1 = 0 (345)

∂u

∂y2
= 2(y2 − y1) + 2µ2 = 0 (346)

The solution is

(x1, y1) =

(
√
2,

√
2

2

)
, (x2, y2) =

(
1 + 3

√
2

5
,
4− 3

√
2

10

)
(347)

The minimum distance is then (2
√
2− 1)/

√
5.

6.3.2 Constrained Extremisation of Functionals

Functional problem is to extremise F [y] subject toG[y] = C. The Lagrange multiplier
is to find solutions of δ(F − λG) = 0.

Example. (The catenary) Find the shape formed by a heavy rope of a chain hanging
between two fixed end points A(−a, 0) and B(a, 0). Our task is to minimise the total
energy. Suppose the mass density is ρ, and the mass of piece is dm = ρds. The total
energy

E = g

∫ B

A

ydm = ρg

∫ B

A

yds = ρg

∫ a

−a

y

√
1 +

(
dy

dx

)2

dx (348)

x

y−a a

Figure 13: A heavy rope of a chain hanging between two fixed end points A(−a, 0) and
B(a, 0).
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The length of the rope is fixed. So the constraint

L =

∫ B

A

ds =

∫ a

−a

√
1 +

(
dy

dx

)2

dx (349)

Then we have to extremise

U = E − λL =ρg

∫ a

−a

y

√
1 +

(
dy

dx

)2

dx− λ

∫ a

−a

√
1 +

(
dy

dx

)2

dx

=

∫ a

−a

(ρgy − λ)
√

1 + y′2dx =

∫ a

−a

fdx

(350)

f does not depend on x, then we can use Beltrami identity

f − ∂f

∂y′
y′ = C (351)

which is

(ρgy − λ)
√

1 + y′2 − (ρgy − λ)
y′2√
1 + y′2

= C (352)

ρgy − λ = C
√

1 + y′2 (353)

Let η = ρgy − λ, then we have η′ = ρgy′. Hence

η = C

√
1 +

η′2

ρ2g2
, η′ = ±ρg

√
η2

C2
− 1 (354)

For x ≥ 0, η′ ≥ 0. So

η′ =
dη

dx
= ρg

√
η2

C2
− 1 ⇒ dη√

η2

C2 − 1
= ρgdx (355)

Let η = C cosh q, then dη = C sinh qdq∫
dη√
η2

C2 − 1
= ρg

∫
dx

⇒ C

∫
dq = ρgdx

⇒ Cq = ρgx+ d

⇒ η

C
= cosh

(
ρgx+ d

C

)
(356)

η′ = 0 when x = 0, so d = 0. Then

y(x) =
1

ρg

[
cosh

(ρgx
C

)
+ λ
]

(357)

The two constraints
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1. When x = a, y = 0
1

ρg

[
cosh

(ρga
C

+ λ
)]

= 0 (358)

2. The length of the rope is fixed

L =

∫ a

−a

cosh
(ρgx
C

)
dx =

C

ρg
sinh

ρgx

C

∣∣∣∣a
−a

=
2C

ρg
sinh

ρga

C
(359)

Then we can find numerically solutions for C and λ from the constraints above.

6.4 Variational Methods for Solving the Schrödinger Equation

6.4.1 Variational Formulation of the Schrödinger Equation

The problem of finding the eigenfunctions of a Hamiltonian Ĥ is equivalent to the
problem of finding the stationary points of the functional

E[ψ] =

∫
ψ∗Ĥψ (360)

subject to the normalisation constraint∫
ψ∗ψ = 1 (361)

We claim that
I[ψ] =

∫
ψ∗Ĥψ − ε

∫
ψ∗ψ (362)

Here ε is the eigenvalue. Let ψ extremes I, we have

δI =I[ψ + δψ]− I[ψ]

=

∫
(δψ∗)Ĥψ +

∫
ψ∗Ĥ(δψ)− ε

∫
(δψ∗)ψ − ε

∫
ψ∗(δψ)

=

∫
(δψ∗)(Ĥψ − εψ) +

∫
(δψ)(Ĥψ − εψ)∗ = 0

(363)

δI =I[ψ + iδψ]− I[ψ]

=− i

∫
(δψ∗)Ĥψ + i

∫
ψ∗Ĥ(δψ) + iε

∫
(δψ∗)ψ − iε

∫
ψ∗(δψ)

=− i

∫
(δψ∗)(Ĥψ − εψ) + i

∫
(δψ)(Ĥψ − εψ)∗ = 0

(364)

Compare the two equations, we have∫
(δψ∗)(Ĥψ − εψ) = 0 (365)

for any ψ. Hence
Ĥψ − εψ = 0 (366)
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6.4.2 The Linear Variational Method

Choose a finite set of basis functions {ϕ1, · · · , ϕM}. The basis are linear independent,
but may not be orthogonal. Express ψ̃ as a linear combination

ψ̃(c) =
M∑
α=1

cαϕα (367)

where c = (c1, · · · , cM) is an M -dimensional vector of expansion coefficients to be
determine. Our task is to extremise

I[ψ̃] = I[c] = E[c]− εN [c] (368)

Here, E is the total energy of the system

E[c] =

∫ M∑
α=1

c∗αϕ
∗
αĤ

M∑
β=1

cβϕβ =
M∑

α,β=1

c∗αHαβcβ (369)

and N is the normalisation constraint.

N [c] =

∫ M∑
α

c∗αϕ
∗
α

M∑
β

cβϕβ =

∫ M∑
α,β=1

c∗αSαβcβ (370)

where
Hαβ =

∫
ϕ∗
αĤϕβ = Hamiltonian matrix (371)

Sαβ =

∫
ϕ∗
αϕβ = overlap matrix (372)

Sαβ = δαβ if basis are orthogonal. Otherwise Sαβ is a positive definite Hermitian
matrix. Now we have constrained variational problem for a function of M variables.
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