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1 LINEAR OSCILLATOR MODEL AND THE NONLINEAR POLARISATION

1 Linear oscillator model and the nonlinear polarisa-
tion

1.1 Linear optics

We can describe the electric field E of a light wave propagating with an oscillatory
function as:

E(r, t) = Ae−i(ωt−k·r), (1)

with amplitude A, frequency ω and wavevector k. Linear optics assumes a linear
response where the electric polarisation:

P = ε0χ
(1)E, (2)

D = ε0E + P = ε0(1 + χ(1))E = εrε0E, (3)

where P is the electric polarisation and D is the displacement vector. The wave
equation in a medium is

∇2E = µ0
∂2

∂t2
(ε0E + P ) =

n2

c2
∂2

∂t2
E, (4)

where n =
√
εrµr and c = 1/

√
ε0µ0.

1.2 The Lorentz oscillator model

The equation of motion for an electron in an oscillating electric field is given by

m∗d
2x

dt2
+m∗γ

dx

dt
Damping

+m∗ω2
0x

Restoring
= − eE0 exp(−iωt)

Driving
. (5)

Assume x(t) has the same temporal dependence on the driving field:

x(t) = x0 exp(−iωt), (6)

and substituting this into Eqn. (5), we find that

x(t) = − e

m∗
1

ω2
0 − ω2 − iγω

E(t). (7)

The polarisation field is

P = −Nex(t) =
e2N

m∗
1

ω2
0 − ω2 − iγω

E(t) = ε0χ
(1)E, (8)

where N is the density of oscillators per unit volume. Therefore, the linear suscepti-
bility χ(1) and the relative permittivity εr can be expressed as

χ(1) =
e2N

ε0m∗
1

ω2
0 − ω2 − iγω

=
ω2
p

ω2
0 − ω2 − iγω

, (9)
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1 LINEAR OSCILLATOR MODEL AND THE NONLINEAR POLARISATION

Figure 1: Real and imaginary parts of the dielectric constant εr derived from the Lorentz
model.

εr = 1 + χ(1) = 1 +
ω2
p

ω2
0 − ω2 − iγω

, (10)

where ωp =
√

Ne2/m∗ε0 is known as the plasma frequency. The real and imaginary
parts of the dielectric constant εr are

Re(εr) = 1 +
(ω2

0 − ω)ω2
p

(ω2
0 − ω2)2 + γ2ω2

, (11)

Im(εr) =
γωω2

p

(ω2
0 − ω2)2 + γ2ω2

. (12)

The refractive index n is defined as the ratio of the speed of light in a vacuum to the
speed of light in the dielectric

n =
c

v
=

√
εr = nr + ini, (13)

which varies with frequency (wavelength). This is known as dispersion. Consid-
ering the wave propagation, the dispersion in the refractive index has two distinct
regimes. When

∂n

∂ω
< 0, (14)

the dispersion is described as anomalous dispersion. This occurs when ω is close
to ω0. When ω is far from ω0

∂n

∂ω
> 0, (15)
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1 LINEAR OSCILLATOR MODEL AND THE NONLINEAR POLARISATION

which is described as normal dispersion. At low absorption, ni → 0, n → nr and
from the Lorenz model:

n = a+
bλ2

λ2 + c
. (16)

This is known as the Sellmeier equation and it will prove useful when we need
values of the refractive index at different wavelengths.

1.3 Nonlinear polarisation

Assume that the electron displacement is not linear with driving field

Fah(x) = −sx− px2 − qx3 − . . . , (17)

and the potential

V =
1

2
sx2 +

1

3
px3 + . . . . (18)

The Nonlinear polarisation then becomes

P = ε0
(
χ(1)E + χ(2)E2 + χ(3)E3 + . . .

)
. (19)

We can write the input field in the form

E = E0 + Eω cos(ωt), (20)

and substitute this into the nonlinear polarisation then we get

P = ε0
(
χ(1)E + χ(2)E2 + χ(3)E3 + . . .

)
= ε0χ

(1)(E0 + Eω cos(ωt)) (linear/first order)

+ ε0χ
(2)(E0 + Eω cos(ωt))

2 (second order)

+ ε0χ
(3)(E0 + Eω cos(ωt))

3 (third order)
+ . . . .

(21)
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2 COUPLED WAVE EQUATIONS FOR NONLINEAR OPTICAL MEDIA

2 Coupled wave equations for nonlinear optical me-
dia

The propagation of an EM wave can be described by the wave equation:

∇2E = µ0
∂2

∂t2
(ε0E + P ). (22)

Restrict this equation to one-dimension then we have

∂2E

∂z2
− µ0ε0

∂2E

∂t2
= µ0

∂2P

∂t2
. (23)

The polarisation P can be expressed as

P = PL + PNL = ε0χ
(1)E + ε0χ

(2)E2 + ε0χ
(3)E3 + . . . . (24)

Take E(z, t) and P (z, t), both as scalar plane waves, to be the sum of discrete fre-
quency components:

E(z, t) =
∑
n

1

2

[
Ẽn(z)e

i(ωnt−knz) + c.c.
]
, (25)

P (z, t) =
∑
n

1

2

[
P̃n(z)e

i(ωnt−knz) + c.c.
]
, (26)

where Ẽn(z) and P̃n(z) are the complex amplitudes of the electric field and polarisa-
tion at the frequency ωn. Substitute these equations in to the one-dimensional wave
equation,

∂2En

∂z2
− n2

c2
∂2En

∂t2
= µ0

∂2PNL
n

∂t2
, (27)

where

∂En

∂z
=

1

2

[
−iknẼne

i(ωnt−knz) +
∂Ẽ

∂z
ei(ωnt−knz) + c.c.

]
, (28)

∂2En

∂z2
=

1

2

[
−k2

nẼne
i(ωnt−knz) − 2ikn

∂Ẽn

∂z
ei(ωnt−knz) +

∂2Ẽ

∂z2
ei(ωnt−knz) + c.c.

]
, (29)

∂2En

∂t2
=

1

2

[
−ω2Ẽne

i(ωnt−knz) + c.c.
]
, (30)

∂2PNL
n

∂t2
=

1

2

[
−ω2P̃NL

n ei(ωnt−knz) + c.c.
]
, (31)

which we can combine in the following partial differential equation

∂2Ẽn

∂z2
− 2ikn

∂Ẽn

∂z
−
(
k2
n −

n2
nω

2
n

c2

)
Ẽn(z) = −µ0ω

2
nP̃

NL
n (z). (32)

The slowly varying envelope approximation (SVEA), i.e. ∂2Ẽn

∂z2
≈ 0, significantly

simplifies the analysis of the equation. Finally we get

∂Ẽn

∂z
=

−iωn

2ε0cnn

P̃NL
n (z). (33)
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3 SECOND HARMONIC GENERATION

3 Second harmonic generation

3.1 Coupled wave equations for SHG

Consider the second harmonic generation, the total fields present in the crystal can
be expressed as

E(z, t) =
1

2

(
Ẽωe

i(ωt−kωz) + Ẽ2ωe
i(2ωt−k2ωz) + c.c.

)
. (34)

Considering only the second order effects, the nonlinear polarisation is

PNL(z, t) =ε0χ
(2)E2(z, t)

=
1

4
ε0χ

(2)
(
Ẽωe

i(ωt−kωz) + Ẽ2ωe
i(2ωt−k2ωz) + c.c.

)2
=
1

2

(
P̃NL
ω ei(ωt−kωz) + P̃NL

2ω ei(2ωt−k2ωz) + . . .
)
+ c.c.,

(35)

where the fundamental (pump) term and the second harmonic term are

P̃NL
ω (z) = ε0χ

(2)Ẽ2ωẼ
∗
ωe

−i(k2ω−2kω)z = ε0χ
(2)Ẽ2ωẼ

∗
ωe

−i∆kz, (36)

P̃NL
2ω (z) =

1

2
ε0χ

(2)ẼωẼωe
i(k2ω−2kω)z =

1

2
ε0χ

(2)Ẽ2
ωe

i∆kz. (37)

Here, ∆k = k2ω−2kω is the wave vector mismatch. Substituting the expressions into
Eqn. (33), then

∂Ẽω

∂z
=

−iωχ(2)

2cnω

Ẽ2ωẼ
∗
ωe

−i∆kz, (38)

∂Ẽ2ω

∂z
=

−iωχ(2)

2cn2ω

Ẽ2
ωe

i∆kz, (39)

with the wave vector mismatch

∆k = k2ω − 2kω =
(2ω)n2ω

c
− 2

ωnω

c
=

2ω

c
(n2ω − nω). (40)

For normal dispersion n2ω > nω, so there would be a phase mismatch term between
E2ω and P2ω.

3.2 Low pump depletion approximation

For efficiencies ηSHG = I2ω/Iω ≪ 1, the pump Ẽω can be considered constant. The
equations become

∂Ẽω

∂z
= 0,

∂Ẽ2ω

∂z
=

−iωχ(2)

2cn2ω

Ẽ2
ωe

i∆kz. (41)

We can solve the equation by integrating

Ẽ2ω(L) =
−iωχ(2)

2cn2ω

Ẽ2
ω

∫ L

0

ei∆kzdz =
−iωχ(2)

2cn2ω

Ẽ2
ωe

i∆kL
2 Lsinc

(
∆kL

2

)
. (42)
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3 SECOND HARMONIC GENERATION

Figure 2: The sinc2(∆kL/2) function.

Recall the intensity

I =
1

2
nε0c|E|2, (43)

which allows us to write

Iω =
1

2
nωε0cẼ

2
ω, (44)

I2ω =
1

2
n2ωε0c

ω2(χ(2))2

4c2n2
2ω

Ẽ4
ωL

2sinc2
(
∆kL

2

)
=

1

2

ω2(χ(2))2I2ω
ε0c3n2

ωn2ω

L2sinc2
(
∆kL

2

)
, (45)

which can also be considered in terms of efficiency

ηSHG =
I2ω
Iω

=
1

2

ω2(χ(2))2Iω
ε0c3n2

ωn2ω

L2sinc2
(
∆kL

2

)
∝ L2sinc2

(
∆kL

2

)
=

sin2(∆kL
2

)

(∆k
2
)2

. (46)

If phase matched, i.e. ∆k = 0, the process is described as being phase matched. If
the process is not phase matched, the first maximum in the sinusoid occurs when

∆kL

2
=

π

2
. (47)

We use this to define the coherence length, Lcoh, which is the shortest length of the
crystal which will maximise the second harmonic generated for a given wavevector
mismatch, that is:

Lcoh =
π

∆k
. (48)

3.3 Photon picture and Manley-Rowe relations

Here two photons at frequency ω are annihilated and one photon at frequency 2ω is
created. The energy conservation and momentum conservation give

ℏω + ℏω = ℏ2ω, ℏkω + ℏkω = ℏk2ω, (49)
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3 SECOND HARMONIC GENERATION

which corresponds to the phase matching requirement 2kω = k2ω that we have al-
ready identified. The photon flux is also conserved:

dΦω

dz
= −2

dΦ2ω

dz
, (50)

where Φω is the photon flux of the fundamental, and Φ2ω is the photon flux of the
second harmonic. The intensity

Ii = Φiℏωi, (51)

So we can write the relation
dIω
dz

= −dI2ω
dz

, (52)

which is known as the Manley-Rowe relations. This relation can also derived from
classical field:

dIω
dz

=
d

dz

(
1

2
nωε0cẼωẼ

∗
ω

)
=

1

2
nωε0c

(
Ẽω

∂Ẽ∗
ω

∂z
+ Ẽ∗

ω

∂Ẽω

∂z

)
. (53)

Combined with couples equations we can get the equivalent results.

3.4 SHG pump depletion

The coupled wave equationa are

∂Ẽω

∂z
=

−iωχ(2)

2cnω

Ẽ2ωẼ
∗
ωe

−i∆kz, (54)

∂Ẽ2ω

∂z
=

−iωχ(2)

2cn2ω

Ẽ2
ωe

i∆kz. (55)

If we have high levels of SHG, we can no longer ignore the corresponding reduction
in Ẽω. Let’s start with ∆k = 0, and take χ(2) and n to be equal for each frequency.

∂Ẽω

∂z
= −iκẼ2ωẼ

∗
ω,

∂Ẽ2ω

∂z
= −iκẼ2

ω, (56)

where κ = ωχ(2)

2cn
. Ẽ is a complex amplitude

Ẽω = Eωe
iϕω , Ẽ2ω = E2ωe

iϕ2ω , (57)

and substitute these into coupled equations giving

∂Eω

∂z
= −iκE2ωE

∗
ωe

−i(2ϕω−ϕ2ω), (58)

∂E2ω

∂z
= −iκE2

ωe
i(2ϕω−ϕ2ω). (59)

Eω and E2ω are real, so the exponent terms ei(2ϕω−ϕ2ω) = i.

∂Eω

∂z
= −κE2ωEω,

∂E2ω

∂z
= κE2

ω. (60)
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3 SECOND HARMONIC GENERATION

The Manley-Rowe energy conservation gives

d

dz
(Iω + I2ω) = 0, (61)

so we have

I0 = Iω + I2ω =
1

2
cε0n

(
E2

ω + E2
2ω

)
⇒ E2

ω =
2I0
cε0n

− E2
2ω. (62)

Therefore,
∂E2ω

∂z
= κ

(
2I0
cε0n

− E2
2ω

)
. (63)

For a nonlinear crystal of length L, integrating the equation gives∫ E2ω(L)

0

dE2ω(z)(
2I0
cε0n

− E2
2ω

) =

∫ L

0

κdz, (64)

and the solution is

E2ω(L) =

√
2I0
cε0n

tanh

(√
2I0
cε0n

κL

)
. (65)

So the intensity

I2ω =
1

2
nε0cE

2
2ω = I0 tanh

2(ΓL), (66)

where the coupling coefficient Γ is

Γ =

√
2I0
cε0n

κ, κ =
ωχ(2)

2cn
. (67)

Finally the pump expression is

Iω = I0 − I2ω = I0
(
1− tanh2(ΓL)

)
. (68)

Figure 3: Pump depletion solution.
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4 CRYSTAL OPTICS

4 Crystal optics

4.1 Light in Birefringent media

We need to find a way of achieving ∆k = 0. In SHG phase matching states

k2ω − 2kω = 0 ⇒ n2ω = nω. (69)

Yet dispersion tells us that n2ω > nω for a given material (assuming normal disper-
sion). To get around this we need to consider whether a material could have more
than one value of refractive index for a given ω. This was touched on earlier when
it was noted that materials might have different refractive indices for light with its
electric field polarised in different directions. This property is known as birefrin-
gence.
In general nx ̸= ny ̸= nz, but we consider the slightly simpler situation in a uniaxial
crystal where two of the values are equal. The unique direction is called the optic
axis (denoted c) with principal extraodinary refractive index ñe, while the refractive
index for light polarised orthogonally is no. A uniaxial crystal can be categorized as
positive or negative:

ñe > no positive uniaxial, (70)
ñe < no negative uniaxial. (71)

If we designate the optic axis c to be in the z-direction and suppose the situation
when light is propagating along the direction of the wavevector k at an angle θ with
respect to the optic axis c, the refractive index satisfies

n2
e(θ)

(
cos2 θ

n2
o

+
sin2 θ

ñ2
e

)
= 1, (72)

which gives

ne(θ) =

(
cos2 θ

n2
o

+
sin2 θ

ñ2
e

)− 1
2

. (73)

x

z(c) y

no

ñe
no

Figure 4: An uniaxial crystal with optic axis designated to be in the z-direction.
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4 CRYSTAL OPTICS

Figure 5: Schematic for Type I phase matching SHG of 532 nm light in a β-BBO crystal.
Indicating the wavelengths involved, the relative polarisations of the beams, the optic
axis c and the cut angle θ relative to the wavevector k.

Figure 6: Schematic for Type II oee phase matching for SHG of 800 nm light in an ADP
crystal. Indicating the wavelengths involved, the relative polarisations of the beams, the
optic axis c and the cut angle θ relative to the wavevector k.

4.2 Phase matching in Birefringent media

4.2.1 Type I phase matching - SHG in BBO

In Type I phase matching for SHG the pump experiences the higher refractive index:

(1) In a positive uniaxial crystal (ñe > no), the pump experiences ne(ω, θI), the SH
experiences no(2ω).

(2) In a negative uniaxial crystal (ñe < no), the pump experiences no(ω), the SH
experiences ne(2ω, θI)

Most nonlinear crystals we will encounter happen to be negative uniaxial, therefore
for phase matching we want

ne(2ω, θI) = no(ω). (74)

4.2.2 Type II phase matching - SHG in ADP

Type II phase matching is subtly different, with the pump having both ordinary and
extraordinary components. This means we can have a positive crystal (oeo) or a
negative crystal (oee). Considering the negative (oee) situation the phase matching
requires

∆kII = ke(2ω)− (ke(ω) + ko(ω)), (75)

which is equivalent to

ne(2ω, θII) =
ne(ω, θII) + no(ω)

2
. (76)
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4 CRYSTAL OPTICS

4.2.3 Beam walk off

Walk-off arises from the fact that the energy flow is given by the Poynting vector:

S = E ×H , (77)

which is not the same as the direction of propagation

k = D ×H . (78)

Beam walk off can not be avoid in critical (angular) phase matching, and has some
negative side effects:

(1) Reduction in conversion efficiency due to spatial overlap reduction with increas-
ing walk-off (reduced interaction length).

(2) The spatial profile of the beam produced will be wider than that of the original
beams.

The walk-off angle is given by

ρ = − 1

ne

∂ne

∂θ
. (79)

4.2.4 Non-critital phase matching (NCPM)

The phase matching considered so far (Type I and Type II) is known as critical phase
matching. These techniques rely on achieving phase matching through angular tun-
ing, but as we saw, they have the disadvantage of beam walk-off. We will now discuss
an alternative approach, known as non-critical phase matching, to achieve ∆k = 0
and avoid walk-off.
Consider the situation where in Type I phase matching we have θI = 90◦ and
ne(2ω, 90

◦, T ) = ñe(2ω, T ). Then we can tune the refractive indices with temper-
ature. For example Lithium Niobate (LiNbO3) has the following:

no(λ) = no(23
◦) +

∂no

∂T
(T − 23◦) = 2.239 + 1× 10−5(T − 23◦), (80)

ñe(λ/2) = ñe(23
◦) +

∂ñe

∂T
(T − 23◦) = 2.235 + 6.67× 10−5(T − 23◦). (81)

12



5 NONLINEAR OPTICS WITH REAL BEAMS

5 Nonlinear optics with real beams

5.1 A pulsed laser source

Real beams are Gaussian laser pulses with a temporal width of ∆ν and a frequency
width of ∆t. The bandwidth theorem tells us that:

∆ν∆t = 0.441. (82)

The pump and SH pulses (both made up of a range of optical frequencies) propagate
through the crystal at different speeds given by the group velocity:

vg(ω0) =
∂ω

∂k

∣∣∣∣
ω0

. (83)

If we consider the limit that (after propagating through a crystal of length L) the
pulses are out of step by the pulse width (∆t) then

∆t =
L

vg(2ω)
− L

vg(ω)
= L× GVM, (84)

where GVM is the group velocity mismatch and

GVM =
1

vg(2ω)
− 1

vg(ω)
. (85)

The phase matching bandwidth is

∆ω = 2π∆ν =
2π 0.441

∆t
=

2π 0.441

L× GVM
, (86)

or equivalently in wavelength

∆λ =
λ2
0

c
∆ν =

0.441λ2
0

cL× GVM
. (87)

5.2 Focussed beams

Focused Gaussian beams have a wavevector spread ∆k. Recall that the SHG effi-
ciency has the form

ηSHG ∝ L2sinc2
(
∆kL

2

)
, (88)

and we discussed that this falls to 50% when

∆kL

2
= ±1.39 ⇒ |∆k| = 2× 1.39

L
. (89)

We anticipate that the changes will be small so we can expand ∆k as a Taylor Series
around the phase matching angle θPM as follows:

∆k(θ) = ∆k(θPM) +
∂∆k

∂θ

∣∣∣∣
θPM

(θ − θPM) +
1

2

∂2∆k

∂θ2

∣∣∣∣
θPM

(θ − θPM)2 + . . . . (90)
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5 NONLINEAR OPTICS WITH REAL BEAMS

As the system is assumed to be phase matched at normal incidence, ∆k(θPM) = 0.
Then

|∆k| =
∣∣∣∣∂∆k

∂θ

∣∣∣∣
θPM

(θ − θPM). (91)

So the full cone angle

∆θ = 2(θ − θPM) =
2|∆k|

∂∆k
∂θ

∣∣
θPM

. (92)

So from our criterion for the acceptance angle (efficiency ≤ 50%) we get

∆θACC =
4× 1.39

L∂∆k
∂θ

∣∣
θPM

, (93)

where
∂∆k

∂θ
=

∂

∂θ

[
2ω

c
(ne(2ω, θ)− no(ω))

]
=

2ω

c

∂ne(2ω, θ)

∂θ

=
ω

c
n3
e(2ω, θ) sin(2θ)

(
1

n2
o(2ω)

− 1

ñ2
e(2ω)

)
.

(94)
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6 Other second order processes

6.1 Three-wave mixing processes

Three waves in a crystal gives the polarisation

PNL(z, t) = ε0χ
(2)(E1(z, t) + E2(z, t) + E3(z, t))

2, (95)

where
Ej(z, t) =

1

2

(
Ẽje

i(ωjt−kjz) + Ẽ∗
j e

−i(ωjt−kjz)
)
. (96)

Assuming E3 is a weak field, so the nonlinear polarisation

PNL(z, t) = ε0χ
(2)E2

total(z, t), (97)

where

E2
total(z, t) =

1

4

(
Ẽ1e

i(ω1t−k1z) + Ẽ∗
1e

−i(ω1t−k1z) + Ẽ2e
i(ω2t−k2z) + Ẽ∗

2e
−i(ω2t−k2z)

)2
=+

1

4

(
Ẽ2

1e
(i(2ω1t−2k1z)) + Ẽ2

2e
(i(2ω2t−2k2z)) + c.c.

)
SHG

+
1

4

(
2Ẽ1Ẽ2e

i((ω1+ω2)t−(k1+k2)z) + c.c
)

SFG

+
1

4

(
2Ẽ1Ẽ

∗
2e

i((ω1−ω2)t−(k1−k2)z) + c.c
)

DFG

+
1

2
|Ẽ1|2 +

1

2
|Ẽ2

2 |. DC

(98)

6.2 Sum frequency generation (SFG)

Let us know look at SFG in more detail. First recall the general form of the coupled
nonlinear equations:

∂Ẽn

∂z
=

−iωn

2ε0cnn

P̃NL(z). (99)

Taking ω3 = ω1 + ω2, and we can write

∂Ẽ3

∂z
=

−iω3

2ε0cn3

ε0χ
(2)Ẽ1Ẽ2e

i∆kz =
−iω3χ

(2)

2cn3

Ẽ1Ẽ2e
i∆kz, (100)

where the wave vector mismatch ∆k = k3 − (k1 + k2). Integrating this equation and
we get

Ẽ3 =
−iω3χ

(2)

2cn3

Ẽ1Ẽ2e
i∆kL

2 Lsinc

(
∆kL

2

)
, (101)

Then the intensity

I3 ∝ (χ(2))2I1I2L
2sinc2

(
∆kL

2

)
. (102)

For the phase matching k3 = k1 + k2, we have

n3ω3 = n1ω1 + n2ω2, or,
n3

λ3

=
n1

λ1

+
n2

λ2

. (103)

15



6 OTHER SECOND ORDER PROCESSES

Figure 7: Comparison between (a) an OPA providing optical gain based on nonlinear
process and (b) an optical amplifier providing optical gain based on stimulated emission.
Both can provide optical gain, but with very different properties.

6.3 Difference frequency generation (DFG)

Similarly with SFG, the third field and the intensity

Ẽ3 =
−iω3χ

(2)

2cn3

Ẽ1Ẽ
∗
2e

i∆kL
2 Lsinc

(
∆kL

2

)
, (104)

I3 ∝ (χ(2))2I1I2L
2sinc2

(
∆kL

2

)
, (105)

where the wave vector mismatch is ∆k = k3−(k1−k2). Using DFG, we can build very
useful and versatile light sources, such as optical parametric amplification (OPA) and
optical parametric oscillator (OPO).

6.4 Optical parametric amplification (OPA)

The OPA process based on DFG in particular can be summarised as follows:

(1) Introduce a signal beam at ω2.

(2) Provide a pump beam at ω1.

(3) The pump photon at ω1 annihilates.

(4) A new photon is created at ω3 which is phase matched with the signal beam.
This is called the idler. Often (but not always!), the idler is only present to
phase and energy match the three wave process, and it may be discarded and
not used. (Be careful this is not always true!)

(5) A new photon at ω2 is created - the signal beam is amplified!

In the OPA process, the signal beam

Ẽ2(z) = Ẽ2(0) cosh(κz), κ ∝ χ(2)Ẽ1. (106)

Note that cosh(κz) has the following approximations:

κz ≪ 1, cosh(κz) → 1 + κ2z2, (107)
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6 OTHER SECOND ORDER PROCESSES

Figure 8: A general schematic of an OPO resonant at the signal frequency ω2. The mirror
M1 is completely transparent to the pump and highly reflective to the signal. M2 will
also be highly reflective of the signal, but slightly less than M1 to allow for the output
coupling of the required signal light.

κz ≫ 1, cosh(κz) → eκz. (108)

Hence in an optimised, phase-matched arrangement the intensity of the light at ω2

grows as
I(ω2, z) = I(ω2, 0)e

γz, γ ∝ χ(2)
√

I(ω1). (109)

For the OPA:

• Conversion via a virtual state - no energy is stored.

• No energy is lost to the medium (energy conservation) - except through ab-
sorption/scattering present in all materials.

• Bandwidth depends on phase matching bandwidth (and transparency of the
crystal).

• Pump and signal must overlap temporally and spatially.

For the stimulated emission amplifier:

• Pump to upper energy level - energy stored in medium.

• Non-radiative transitions - energy absorbed, heating the medium.

• Bandwidth limited by transition linewidth in the host material.

6.5 Optical parametric oscillator (OPO)

The gain from the OPA and the feedback from the cavity cause it to oscillate, pro-
viding coherent radiation like a laser. This is called an optical parametric oscillator
(OPO). Within the cavity there are the three beams necessary for the OPA process:

(1) The pump - providing the energy that will provide the gain.

(2) The signal - this is resonant in the cavity and will form the mode.

(3) The idler - this completes the phase matching in the OPA/DFG process.
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6 OTHER SECOND ORDER PROCESSES

The resonant spacing is

∆ω = 2π∆ν =
2πc

2nωL
. (110)

The system will oscillate at the frequency of the longitudinal mode closest to the
phase matching condition.
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7 Third order processes

7.1 Third harmonic generation (THG)

When we consider the third order processes, the polarisation

P = ε0χ
(1)E + ε0χ

(2)E2 + ε0χ
(3)E3 (111)

In centrosymmetric media, the χ(2) tern would disappear. In this case

PNL = ε0χ
(3)E3. (112)

Focusing on the case where only one pump beam is present which we will write as
E = Eω cos(ωt), the nonlinear polarisation

PNL = ε0χ
(3)Eω cos

3(ωt) =
1

4
ε0χ

(3)Eω (3 cos(ωt) + cos(3ωt)) . (113)

The 3ω term is third harmonic generation (THG).

7.2 Intensity dependent refractive index (IDRI)

From the discussions above, the polarisation is

P = ε0

(
χ(1) +

3

4
χ(3)E2

ω

)
Eω cos(ωt) + THG. (114)

If we neglect THG for now, then

P = ε0

(
χ(1) +

3

4
χ(3)E2

ω

)
Eω cos(ωt) = ε0χeffEω cos(ωt), (115)

which is known as Kerr effect, and the effective susceptibility

χeff = χ(1) +
3

4
χ(3)E2

0 (116)

So the refractive index n satisfies

n2 = 1 + χeff = 1 + χ(1) +
3

4
χ(3)E2

0 = n2
L +

3

4
χ(3)E2

0 = n2
L

(
1 +

3

4

χ(3)

n2
L

E2
0

)
, (117)

then

n = nL

(
1 +

3

4

χ(3)

n2
L

E2
0

) 1
2

, n2
L = 1 + χ(1). (118)

When χ(3) ≪ 1, we can use binomial expansion:

n = nL +
3

8

χ(3)

nL

E2
0 = nL +

3

4

χ(3)

n2
Lcε0

I0 = nL + n2I0, n2 =
3

4

χ(3)

n2
Lcε0

. (119)
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Figure 9: Self focussing arising within (a) a thin and (b) a thick block of material.

7.3 Self-focussing

The fundamental mode of a laser has a Gaussian profile of radius w (at 1/e2) is
described by

I = I0 exp

(
−2r2

w2

)
. (120)

Close to the axis of a Gaussian beam the intensity profile is approximately quadratic
in r

I = I0 exp

(
−2r2

w2

)
≈ I0

(
1− 2r2

w2

)
. (121)

We can substitute this back into our equation we found for the IDRI as follows

n = nL + n2I0

(
1− 2r2

w2

)
. (122)

7.3.1 Thin block

The optical path, OP , is given by

OP (r) = n(r)L. (123)

In a thin block (thickness d of material exhibiting an IDRI through n2), the optical
path

OAF = (nL + n2I0) d+ f, (124)

O′BF =

(
nL + n2I0 − n2I0

2r20
w2

)
d+

√
f 2 + r20

=

(
nL + n2I0 − n2I0

2r20
w2

)
d+ f +

r20
2f

.

(125)

Bringing these equations together and equating the optical paths gives the focal
length

f =
w2

4n2I0d
(126)
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7.3.2 Thick block

If we consider a thick block the situation is slightly different. We assume that the ray
incident at B is at the extreme and only experiences the linear refractive index nL,
The optical paths

OF = (nL + n2I0)f, (127)

BF =
nLf

cos θ
= nLf

(
1 +

θ2

2

)
. (128)

Equating paths gives the focussing angle

θ =

√
2n2I0
nL

. (129)

For a thick block the focussing of the beam means a greater IDRI which leads to
tighter focussing until the spot becomes very small spot with very high intensity.
The material will then damage, either through intense heating (thermal damage) or
ionisation, both leading to permanent optical damage. This is a problem for high
intensity (pulse) propagation in materials exhibiting IDRI.

7.4 Self-phase modulation (SPM)

A Gaussian pulse of full-width half maximum (FWHM) ∆t described by

I(t) = I0 exp

(
− t2

∆t2

)
. (130)

If the material exhibits an IDRI then the refractive index experienced by the pulse
depends on time and is given by:

n(t) = nL + n2I0 exp

(
− t2

∆t2

)
. (131)

The phase of this wave is described by

ϕ(t) = ω0t− kz = ω0t−
ω0

c
n(t)z (132)

the intensity dependent refractive index changes the phase of the the wave itself as
a function of time - this is self-phase modulation (SPM). The frequency

ω =
∂ϕ(t)

∂t
= ω0 −

ω0

c
z
∂n(t)

∂t
. (133)

Therefore, for a nonlinear material of length L, the new spread of frequencies
present at the output is given by

ω(t) = ω0 +
2ω0n2I0
c∆t2

Lte−
t2

∆t2 . (134)
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This tells us that the frequency changes relative to the central frequency ω0 across
the pulse width in time. This is called a frequency chirp. When t close to zero,
ω(t) − ω0 ∝ t, that is to say, a linear chirp. For |t| ≫ ∆t, then ω → ω0. In between
these two limits, there are turning points

∂2ϕ(t)

∂t2
∝ e−

t2

∆t2

(
1− 2t2

∆t2

)
= 0, (135)

which gives

t = ±∆t√
2
. (136)

We then define the bandwidth generated by SPM (∆ωSPM) as the range between the
turning points:

∆ωSPM = ω(∆t/
√
2)− ω(−∆t/

√
2) =

2
√
2ω0n2I0L

c∆t
√
e

∝ n2IL

∆t
. (137)

7.5 Four-wave mixing (FWM)

Now we consider a more general framework for any four-wave mixing process.

PNL(z, t) = ε0χ
(3)(E1(z, t) + E2(z, t) + E3(z, t) + E4(z, t))

3. (138)

This results in the generation of waves with frequencies given by ω = ±ω1 ± ω2 ± ω3

in addition to third harmonic generation waves with ω = 3ω1, 3ω2, 3ω3. Now we
consider the following ω = ω1 + ω2 − ω3 and k = k1 + k2 − k3, then the terms at ω
are

PNL(r, t) =
3

2
ε0χ

(3)Ẽ1e
−i(ω1t−k1·r)Ẽ2e

−i(ω2t−k2·r)Ẽ∗
3e

i(ω3t−k3·r) (139)

Restrict to common geometry k1 = −k2 and k4 = −k3. Assume E1 and E2 are very
strong, much stronger than E3 and E4. Recall the coupled equations

∂Ẽn

∂z
=

−iωn

2ε0cnn

P̃NL
n (z), (140)

we have

∂Ẽ1

∂z
= iκ(|Ẽ1|2 + 2|Ẽ2|2)Ẽ1, (141)

∂Ẽ∗
2

∂z
= −iκ(|Ẽ2|2 + 2|Ẽ1|2)Ẽ2, (142)

∂Ẽ3

∂z
= iκ

[
(|Ẽ1|2 + |Ẽ2|2)Ẽ3 + Ẽ1Ẽ2Ẽ

∗
4

]
, (143)

∂Ẽ∗
4

∂z
= −iκ

[
(|Ẽ1|2 + |Ẽ2|2)Ẽ4 + Ẽ1Ẽ2Ẽ

∗
3

]
. (144)

If we assume E1, E2, E3 are undepleted, i.e., ∂Ẽ1,2,3/∂z = 0, then

I4(L) =
L2

4
(χ(3))2I1I2I3sinc

2

(
∆kL

2

)
. (145)
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If we assume E1, E2 are undepleted, E3 is now depleted, then

∂Ẽ3

∂z
= iκ

[
(|Ẽ1|2 + |Ẽ2|2)Ẽ3 + Ẽ1Ẽ2Ẽ

∗
4

]
, (146)

∂Ẽ∗
4

∂z
= −iκ

[
(|Ẽ1|2 + |Ẽ2|2)Ẽ4 + Ẽ1Ẽ2Ẽ

∗
3

]
. (147)

The equations can be simplified with a change of variable Ẽ3 = Ẽ ′
3 exp(2iκz) and

Ẽ4 = Ẽ ′
4 exp(−2iκz), leading to

∂Ẽ ′
3

∂z
= iκẼ ′∗

4 ,
∂Ẽ ′

4

∂z
= iκẼ ′∗

3 . (148)

The trial solution is

Ẽ ′
4 = B sin(κz + C) +D cos(κz + E). (149)

7.5.1 Optical phase conjugation

Assuming phase-matching and undepleted pump

E4(L) =
iωL

2nc
χ(3)E1(0)E2(0)E

∗
3(0). (150)

E4 is therefore the phase-conjugate of E3:

E3(z, t) = E0e
i(ωt−kz) ⇒ E4(z, t) ∝ e−i(ωt−kz). (151)

Phase conjugate mirror inverts the sign of the phase:

ϕ = ωt− k · r ⇒ −ϕ = ω(−t)− (−k) · r, (152)

while normal mirror reflects only direction of k. One application of optical phase
conjugation is real time holography:

(1) Hologram is written by E1 and E2 through the optical Kerr effect.

(2) Probe E3 interacts with the hologram and diffracts into E4.

Figure 10: Phase conjugation geometry.

23


	1 Linear oscillator model and the nonlinear polarisation
	1.1 Linear optics
	1.2 The Lorentz oscillator model
	1.3 Nonlinear polarisation

	2 Coupled wave equations for nonlinear optical media
	3 Second harmonic generation
	3.1 Coupled wave equations for SHG
	3.2 Low pump depletion approximation
	3.3 Photon picture and Manley-Rowe relations
	3.4 SHG pump depletion

	4 Crystal optics
	4.1 Light in Birefringent media
	4.2 Phase matching in Birefringent media
	4.2.1 Type I phase matching - SHG in BBO
	4.2.2 Type II phase matching - SHG in ADP
	4.2.3 Beam walk off
	4.2.4 Non-critital phase matching (NCPM)


	5 Nonlinear optics with real beams
	5.1 A pulsed laser source
	5.2 Focussed beams

	6 Other second order processes
	6.1 Three-wave mixing processes
	6.2 Sum frequency generation (SFG)
	6.3 Difference frequency generation (DFG)
	6.4 Optical parametric amplification (OPA)
	6.5 Optical parametric oscillator (OPO)

	7 Third order processes
	7.1 Third harmonic generation (THG)
	7.2 Intensity dependent refractive index (IDRI)
	7.3 Self-focussing
	7.3.1 Thin block
	7.3.2 Thick block

	7.4 Self-phase modulation (SPM)
	7.5 Four-wave mixing (FWM)
	7.5.1 Optical phase conjugation



