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1 ELEMENTS OF QUANTUM MECHANICS AND QUANTUM INFORMATION

1 Elements of quantum mechanics and quantum in-
formation

1.1 Tools from quantum mechanics (I)

1.1.1 States and operators

The Hamiltonian for quantum harmonic oscillator

Ĥ = ωâ†â, (1)

where the unit of ℏ = 1 has been applied and the zero-point energy ω/2 has been
ignored. With the common relations

â |n⟩ =
√
n |n− 1⟩ , â† |n⟩ =

√
n+ 1 |n+ 1⟩ , â†â |n⟩ = n |n⟩ , (2)

we can express the operator â as

â =
∑
m,n

|m⟩ ⟨m| â |n⟩ ⟨n| =
∑
m,n

√
n |m⟩ ⟨m|n− 1⟩ ⟨n| =

∑
n

√
n+ 1 |n⟩ ⟨n+ 1| . (3)

Similarly, we can express any operator for any quantum system as

Â =
∑
i,j

⟨i| Â |j⟩ |i⟩ ⟨j| . (4)

For a two-dimensional system, i.e., a qubit, the corresponding space of operators is
in a 2× 2 matrix, and a common basis is given by the identity 1 and the three Pauli
matrices:

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
, 1 =

(
1 0
0 1

)
, (5)

which implies the commutator and anti-commutator relation

[σ̂α, σ̂β] = 2iεαβγσ̂γ, {σ̂α, σ̂β} = δαβ1. (6)

1.1.2 Dynamics

The Schrödinger equation can be written as

i
d

dt
|Ψ(t)⟩ = Ĥ |Ψ(t)⟩ , (7)

with a time-independent Hamiltonian, one obtains that

|Ψ(t)⟩ = Û(t, t0) |Ψ(t0)⟩ = e−iĤ(t−t0) |Ψ(t0)⟩ , (8)

where Û(t, t0) = exp
[
−iĤ(t− t0)

]
is called the time-evolution operator or propa-

gator, which has several key properties:
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1 ELEMENTS OF QUANTUM MECHANICS AND QUANTUM INFORMATION

1. The propagator Û and Ĥ commute, and have the same eigenstates. With
the spectral decomposition Ĥ =

∑
j ωj |Ψj⟩ ⟨Ψj|, one obtains

Û = Û
∑
j

|Ψj⟩ ⟨Ψj| =
∑
j

e−iωj(t−t0) |Ψj⟩ ⟨Ψj| . (9)

2. The propagator is unitary, i.e.

Û(t, t0)Û
†(t, t0) = Û †(t, t0)Û(t, t0) = 1, (10)

which guarantees conservation of norm of |Ψ(t)⟩, and thus normalisation.

3. The propagator (as an operator) satisfies the Schrödinger equation. The
basis states evolve as |Ψj(t)⟩ = Û(t, t0) |Ψj(t0)⟩. That is, we can write the
propagator as

Û(t, t0) = Û(t, t0)
∑
j

|Ψj(t0)⟩ ⟨Ψj(t0)| =
∑
j

|Ψj(t)⟩ ⟨Ψj(t0)| . (11)

We thus obtain

i
d

dt
Û =

∑
j

i
d

dt
|Ψj(t)⟩ ⟨Ψj(t0)| =

∑
j

Ĥ |Ψj(t)⟩ ⟨Ψj(t0)| = ĤÛ . (12)

In quantum information, one often uses the term “quantum gate” or simply “gate”
instead of propagator.

1.1.3 Measurement

Formally, a measurement is described in terms of projectors. Choose {|0⟩ , |1⟩} as the
measurement basis, and the projectors are P̂0 = |0⟩ ⟨0| and P̂1 = |1⟩ ⟨1|. The state
reduction

P̂0 |ψ⟩ = P̂0(α |0⟩+ β |1⟩) = α |0⟩ , (13)

P̂1 |ψ⟩ = P̂1(α |0⟩+ β |1⟩) = β |1⟩ , (14)

with the probabilities

p0 = ⟨ψ| P̂0 |ψ⟩ = |α|2, p1 = ⟨ψ| P̂1 |ψ⟩ = |β|2. (15)

The condition
∑

i pi = ⟨ψ|
∑

i P̂i |ψ⟩ = 1, or
∑

i P̂i = 1, must be required.

1.2 Quantum key distribution - BB84

Quantum key distribution (QKD) permits to share string of random numbers. One
of the QKD protocol is BB84, which invented by Charles Bennett and Giles Brassard
in 1984. The four quantum states used in BB84 are:
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1 ELEMENTS OF QUANTUM MECHANICS AND QUANTUM INFORMATION

• |H⟩ = |0⟩ and |V⟩ = |1⟩ in the rectilinear basis (+).

• |D⟩ = |+⟩ and |A⟩ = |−⟩ in the diagonal basis (×).

1. Sending: Alice randomly selects a string of bits and a string of basis (+ or ×)
of equal length and send photons.

2. Receiving: Bob randomly chooses a basis for each photon to measure its po-
larisation. If Bob selects the same basis as Alice for a particular photon, he will
correctly find the bit Alice wanted to share, as he measured the same polarisa-
tion. If he doesn’t guess correctly, he will get a random bit.

3. Compare: Bob tells Alice about the bases he used to measure each photon.
Alice informs Bob of the bases that he guessed correctly to measure the en-
coded bits. After that, Alice and Bob remove the encoded and measured bits
on different bases. Now, Alice and Bob have an identical bit-string, the shifted
key.

Alice’s random bits 0 1 1 0 1 1 0 0 1 0 1 1 0
Alice’s encoding basis × + × + + + + + × × + × ×
Photons Alice sends D V A H V V H H A D V A D

Random measurement basis + × × + + × × + × + × × ×
Bits received by Bob H A A H V D A H A H D A D
The common basis ✓ ✓ ✓ ✓ ✓ ✓ ✓

Shifted key 1 0 1 0 1 1 0

Table 1: The BB84 protocol.

1.3 No-cloning theorem

Let’s assume we have a qubit in a given state |Ψ⟩ (but we don’t know the exact state)
and a second qubit in the |0⟩ state. We would like to find a gate such that

Û |Ψ⟩ |0⟩ = |Ψ⟩ |Ψ⟩ , ∀ |Ψ⟩ . (16)

This implies
Û |0⟩ |0⟩ = |0⟩ |0⟩ , Û |1⟩ |0⟩ = |1⟩ |1⟩ . (17)

For a general state |Ψ⟩ = α |0⟩+ β |1⟩, this implies that

Û (α |0⟩+ β |1⟩) |0⟩ = α |0⟩ |0⟩+ β |1⟩ |1⟩ , (18)

whereas we would have wanted to obtain

(α |0⟩+ β |1⟩) (α |0⟩+ β |1⟩) = α2 |0⟩ |0⟩+ αβ(|0⟩ |1⟩+ |1⟩ |0⟩) + β2 |1⟩ |1⟩ , (19)

in a cloning process. In the above example, the cloning process works if either α or
β vanishes; that is, it only works for the two orthogonal basis states for which it is
defined.
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1 ELEMENTS OF QUANTUM MECHANICS AND QUANTUM INFORMATION

1.4 Tools from quantum mechanics (II)

In this section, we consider how to describe a quantum system of two subsystems –
bipartite system.

1.4.1 Bell’s inequality

Assume that Alice has two cards A0, A1 having their value either +1 or −1 and Bob
has his cards B0 and B1 also having their values +1 or −1. If all the cards bear the
value +1, i.e. A0 = A1 = B0 = B1 = 1, then

A0B0 + A0B1 + A1B0 − A1B1 = 2, (20)

and the average
⟨A0B0⟩+ ⟨A0B1⟩+ ⟨A1B0⟩ − ⟨A1B1⟩ ≤ 2. (21)

This is called Bell’s inequality which is obtained for classical physics based on local
realism. However, we can prove that a quantum-mechanically correlated state can
violate Bell’s inequality. Let us assume the singlet state,

|ψ⟩ = 1√
2
(|01⟩ − |10⟩) (22)

and the observables Â0 = σ̂z, Â1 = σ̂x, B̂0 = − 1√
2
(σ̂x + σ̂z), B̂1 =

1√
2
(σ̂x − σ̂z). Then

we find that

⟨Â0 ⊗ B̂0⟩ = ⟨ψ| Â0 ⊗ B̂0 |ψ⟩

= − 1

2
√
2
(⟨01| − ⟨10|)σ̂z ⊗ (σ̂x + σ̂z)(|01⟩ − |10⟩)

= − 1

2
√
2
(⟨01| − ⟨10|) (|00⟩ − |01⟩+ |11⟩+ |10⟩) = 1√

2
.

(23)

Similarly, we can find

⟨Â0 ⊗ B̂0⟩ = ⟨Â0 ⊗ B̂1⟩ = ⟨Â1 ⊗ B̂0⟩ = −⟨Â1 ⊗ B̂1⟩ =
1√
2
, (24)

and the Bell’s expectation value is

⟨Â0 ⊗ B̂0⟩+ ⟨Â0 ⊗ B̂1⟩+ ⟨Â1 ⊗ B̂0⟩ − ⟨Â1 ⊗ B̂1⟩ = 2
√
2, (25)

which clearly violates Bell’s inequality.

1.4.2 Partial trace

The trace of the operator Â reads

Tr Â =
∑
i

⟨i| Â |i⟩ , (26)
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1 ELEMENTS OF QUANTUM MECHANICS AND QUANTUM INFORMATION

for any orthonormal basis {|i⟩}. For an operator Â⊗ B̂ (on Ha ⊗Hb) we can define
the partial traces

Trb

(
Â⊗ B̂

)
= ÂTrb B̂, Tra

(
Â⊗ B̂

)
= B̂ Tra Â. (27)

The partial trace naturally appears in expressions of the form Tr
((
Â⊗ I

)
Ĉ
)

, where

Â acts on Ha, I acts on Hb and Ĉ acts on Ha ⊗Hb:

Tr
((
Â⊗ I

)
Ĉ
)
=
∑
ij

⟨i|a ⊗ ⟨j|b
((
Â⊗ I

)
Ĉ
)
|i⟩a ⊗ |j⟩b

=
∑
ij

(
⟨i|a Â

)
⊗ ⟨j|b Ĉ (|i⟩a ⊗ |j⟩b)

=
∑
i

⟨i|a Â

(∑
j

⟨j|b Ĉ |j⟩b

)
|i⟩a

= Tra

(
ÂTrb Ĉ

)
.

(28)
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2 QUANTUM ALGORITHMS

2 Quantum algorithms

2.1 Quantum interferometers

Let’s take the Mach-Zehnder interferometer as an example.

|0⟩

50:50 beam splitter mirror

ϕ

Figure 1: The Mach-Zehnder interferometer.

The Mach-Zehnder interferometer is described by

1√
2

(
1 −1
1 1

)
2nd bs

(
1 0
0 eiϕ

)
phase shift

1√
2

(
1 1
−1 1

)
1st bs

(
1
0

)
input

= e−iπ
4
σ̂yR̂ϕe

iπ
4
σ̂y |0⟩ , (29)

where the phase shift is described by the rotation

R̂ϕ =

(
1 0
0 eiϕ

)
= eiϕ/2

(
e−iϕ/2 0
0 eiϕ/2

)
, (30)

and the beam splitter is described by

B̂ =
1√
2

(
1 1
−1 1

)
=

1√
2
(1+ σ̂y) = ei

π
4
σ̂y . (31)

|0⟩

|1⟩

Yπ
4

ϕ Y−π
4

ϕ

(a) (b) (c)

Figure 2: (a) For the input state |0⟩, the quantum circuit for the Macj-Zehnder interfer-
ometer. (b) The controlled-phase gate. (c) The controlled-not (CNOT) gate.

2.2 Basic gate operations (I)

• Pauli X, Y, Z gates - single qubit gates

X̂ =

(
0 1
1 0

)
, Ŷ =

(
0 −i
i 0

)
, Ẑ =

(
1 0
0 1

)
. (32)
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2 QUANTUM ALGORITHMS

• Hadamard gate

Ĥ =
1√
2

(
1 1
1 −1

)
. (33)

• Controlled-phase gate 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiϕ

 . (34)

• Controlled-NOT gate

Ûc = |00⟩ ⟨00|+ |01⟩ ⟨01|+ |10⟩ ⟨11|+ |11⟩ ⟨10|
= |0⟩ ⟨0| ⊗ 1+ |1⟩ ⟨1| ⊗ σ̂x,

(35)

which generates

input output
control target control target

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Table 2: Controlled-NOT gate.

Compare with the XOR gate (for conventional computer)

input output
0 0 0
0 1 1
1 0 1
1 1 0

Table 3: The XOR gate in conventional computer.

NOTE: Any unitary on a system with several qubits as a sequence of single qubit
gates and CNOT gates. A general single qubit unitary gate and two-qubit controlled-
gate are called a universal quantum gate.

2.3 Deutsch-Jozsa algorithm

The task of this algorithm is to probe whether a function f : {0, 1} → {1, 0} is
constant, i.e. if f(0) = f(1), or if it is balanced, i.e. if f(0) ̸= f(1). The function f
can be implemented in terms of a two qubit gate

|i⟩ ⊗ |j⟩ → Û0 |ij⟩ = |i⟩ ⊗ |j ⊕ f(i)⟩ , (36)

9



2 QUANTUM ALGORITHMS

where ‘⊕’ denotes the addition modulo 2, i.e., 0 ⊕ A = A and 1 ⊕ A = Ā, where Ā
denotes “not A”.

Û0 |00⟩ = |0f(0)⟩ , (37)

Û0 |01⟩ = |0f(0)⟩, (38)

Û0 |10⟩ = |1f(1)⟩ , (39)

Û0 |11⟩ = |1f(1)⟩. (40)

With the initial state

|+⟩ ⊗ |−⟩ = 1

2
(|00⟩ − |01⟩+ |10⟩ − |11⟩) , (41)

one obtains

Û0 |+⟩ ⊗ |−⟩ = 1

2

(
|0f(0)⟩ − |0f(0)⟩+ |1f(1)⟩ − |1f(1)⟩

)
= |Ψ0⟩ . (42)

If f(0) = f(1), this reduces to

|Ψ0⟩ =
1

2

[
(|0⟩+ |1⟩)⊗ |f(0)⟩ − (|0⟩+ |1⟩)⊗ |f(0)⟩

]
= |+⟩ ⊗ |f(0)⟩ − |f(0)⟩√

2
. (43)

If f(0) = f(1), this reduces to

|Ψ0⟩ =
1

2

[
(|0⟩ − |1⟩)⊗ |f(0)⟩ − (|0⟩ − |1⟩)⊗ |f(0)⟩

]
= |−⟩ ⊗ |f(0)⟩ − |f(1)⟩√

2
. (44)

A measurement on the first qubit in the σ̂x-basis permits to distinguish between these
two cases.

In practice, the algorithm would be broken down in the elementary steps:

1. Preparation of the initial state |0⟩ ⊗ |0⟩.

2. Application of the gate e−iπ
4
σ̂y ⊗ ei

π
4
σ̂y (if we want to use the Hadamard gate

Ĥ ⊗ Ĥσ̂x) [
exp
(
−iπ

4
σ̂y

)
⊗ exp

(
i
π

4
σ̂y

)]
(|0⟩ ⊗ |0⟩) = |+⟩ ⊗ |−⟩ . (45)

3. Query to the oracle

• If f(0) = f(1), then the first qubit is in |+⟩.
• If f(0) = f(1), then the first qubit is in |−⟩.

4. Application of the gate exp
(
−iπ

4
σ̂y
)
⊗ 1, which will bring |+⟩ to |1⟩ and |−⟩ to

|0⟩.

5. Measurement on the first qubit in the σ̂z-basis.
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2 QUANTUM ALGORITHMS

Y−π
4

Yπ
4

Uf

Y−π
4

Figure 3: The quantum circuit of the Deutsch-Jozsa algorithm.

2.4 Basic gate operations (II)

2.4.1 Controlled-Z gate and controlled-unitary gate

The Controlled-Z gate

Ûcz = |0⟩ ⟨0| ⊗ 1+ |1⟩ ⟨1| ⊗ σ̂z, (46)

which is similar to a CNOT gate which reads

Ûc = Ûcx = |0⟩ ⟨0| ⊗ 1+ |1⟩ ⟨1| ⊗ σ̂x. (47)

With σ̂z = exp
(
iπ
4
σ̂y
)
σ̂x exp

(
−iπ

4
σ̂y
)
, one can see that Ûcz can be realise as the gate

sequence:

Ûcz = |0⟩ ⟨0| ⊗ 1+ |1⟩ ⟨1| ⊗ exp
(
i
π

4
σ̂y

)
σ̂x exp

(
−iπ

4
σ̂y

)
=
[
1⊗ exp

(
i
π

4
σ̂y

)]
(|0⟩ ⟨0| ⊗ 1)

[
1⊗ exp

(
−iπ

4
σ̂y

)]
+
[
1⊗ exp

(
i
π

4
σ̂y

)]
(|1⟩ ⟨1| ⊗ σ̂x)

[
1⊗ exp

(
−iπ

4
σ̂y

)]
=
[
1⊗ exp

(
i
π

4
σ̂y

)]
Ûc

[
1⊗ exp

(
−iπ

4
σ̂y

)]
.

(48)

We can generalize two qubit operations to the controlled-unitary operation:

Ûcu = |0⟩ ⟨0| ⊗ 1+ |1⟩ ⟨1| ⊗ Û . (49)

NOTE: In a controlled gate operation, the action on one qubit is dependent on the
state of another qubit. So they cannot be written in Û1 ⊗ Û2.

2.4.2 Three qubits - controlled-controlled-unitary gate

A generalisation of the controlled-unitary gate to a system of three qubits is a controlled-
controlled-unitary gate

(1⊗ 1− |1⟩ ⟨1| ⊗ |1⟩ ⟨1|)⊗ 1+ |1⟩ ⟨1| ⊗ |1⟩ ⟨1| ⊗ Û . (50)

The controlled-not gate operation can be written in

|i⟩ |j⟩ → |i⟩ |i⊕ j⟩ , or target → target ⊕ control. (51)

The controlled-unitary gate operation can be written in

|i⟩ |j⟩ → |i⟩ Û i |j⟩ . (52)

The three qubits gate can be decomposed into single and two-qubit gates as depicted
in the quantum circuit Fig. 4.
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2 QUANTUM ALGORITHMS

U V V † V

Figure 4: A controlled-controlled-U operation can be realised in terms of CNOT and
controlled-V operations for Û = V̂ 2

1. |i⟩ |j⟩ V̂ j |k⟩.

2. |i⟩ |i⊕ j⟩ V̂ j |k⟩.

3. |i⟩ |i⊕ j⟩ (V̂ †)i⊕jV̂ j |k⟩.

4. |i⟩ |i⊕ (i⊕ j)⟩ (V̂ †)i⊕jV̂ j |k⟩ = |i⟩ |j⟩ (V̂ †)i⊕jV̂ j |k⟩.

5. |i⟩ |j⟩ V̂ i(V̂ †)i⊕jV̂ j |k⟩.

So we have

Û |00⟩ ⊗ |ϕ⟩ = |00⟩ ⊗ |ϕ⟩ , (53)

Û |01⟩ ⊗ |ϕ⟩ = |01⟩ ⊗ |ϕ⟩ , (54)

Û |10⟩ ⊗ |ϕ⟩ = |10⟩ ⊗ |ϕ⟩ , (55)

Û |11⟩ ⊗ |ϕ⟩ = |11⟩ ⊗ Û |ϕ⟩ . (56)

2.4.3 NOT gate

The Pauli σ̂x operator is also called as the NOT gate as it switches

σ̂x |0⟩ = |1⟩ , σ̂x |1⟩ = |0⟩ . (57)

In quantum mechanics, do we have a universal-NOT gate? Let’s consider an arbitrary
state

|Ψ⟩ = α |0⟩+ β |1⟩ , (58)

then
NOT |Ψ⟩ = α |1⟩+ β |0⟩ = |Ψ′⟩ . (59)

As
⟨Ψ′|Ψ⟩ = (α∗ ⟨1|+ β∗ ⟨0|) (α |0⟩+ β |1⟩) = α∗β + β∗α ̸= 0, (60)

NOT operation cannot to bring the initial state |ψ⟩ to its orthogonal state |Ψ⊥⟩ (⟨Ψ⊥|Ψ⟩ =
0), i.e. we don’t have a universal-NOT gate in quantum mechanics.
We can also define

√
NOT to satisfy

√
NOT

√
NOT = NOT:

√
NOT =

1

2

(
1 + i 1− i
1− i 1 + i

)
. (61)

12
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2.4.4 SWAP gate

The SWAP gate is to swap two qubits

SWAP |Ψ⟩ |Φ⟩ = |Φ⟩ |Ψ⟩ , (62)

with

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (63)

and

√
SWAP =


1 0 0 0
0 1

2
(1 + i) 1

2
(1− i) 0

0 1
2
(1− i) 1

2
(1 + i) 0

0 0 0 1

 . (64)

2.5 Grover’s algorithm (quantum search algorithm)

The goal of the algorithm is to find a solution to the search problem. Let’s consider
a system with n qubits; that is, we are working in an N = 2n dimensional Hilbert
space. The Grover’s algorithm follows the following steps:

1. The system begins with the initial state |0⟩ ⊗ |0⟩ ⊗ · · · ⊗ |0⟩ = |0⟩⊗n.

2. Apply Hadamard transform Ĥ⊗n

|s⟩ = Ĥ |0⟩ ⊗ · · · ⊗ Ĥ |0⟩ ⊗ Ĥ |0⟩ = |+⟩⊗n =
1√
N

N−1∑
i=0

|i⟩ . (65)

3. Apply Û = 1 − 2 |q⟩ ⟨q| to distinguish the basis state |q⟩ from all other N − 1
basis states |i⟩

Û |s⟩ = (1− 2 |q⟩ ⟨q|) |s⟩ = |s⟩ − 2 |q⟩ ⟨q| 1√
N

N−1∑
i=0

|i⟩ = |s⟩ − 2√
N

|q⟩ . (66)

4. Apply V̂ = 2 |s⟩ ⟨s| − 1

V̂ Û |s⟩ =(2 |s⟩ ⟨s| − 1)

(
|s⟩ − 2√

N
|q⟩
)

=2 |s⟩ − |s⟩ − 4√
N

|s⟩ ⟨s|q⟩+ 2√
N

|q⟩

= |s⟩ − 4√
N

|s⟩ 1√
N

N−1∑
i=0

⟨i|q⟩+ 2√
N

|q⟩

=
N − 4

N
|s⟩+ 2√

N
|q⟩

=
N − 4

N
√
N

N−1∑
i ̸=q

|i⟩+
(
N − 4

N
√
N

+
2√
N

)
|q⟩ .

(67)

13
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We find that the probability of finding |q⟩ is(
N − 4

N
√
N

+
2√
N

)2

>
1

N
, for N > 2. (68)

5. Repeat the process 3 and 4 to increase the probability of finding the system in
|q⟩.

2.6 Quantum Fourier transform

The quantum Fourier transform QF for an N -dimensional system is defined as

QF |Φp⟩ =
1√
N

N−1∑
q=0

e
2πi
N

pq |Φq⟩ . (69)

For N = 2n one can realise it with n qubits.

• A single qubit

QF |p⟩ = 1√
2

1∑
q=0

e
2πi
N

pq |q⟩ = 1√
2

(
|0⟩+ eiπp |1⟩

)
. (70)

This is also know as Hadamard gate, with

QF |0⟩ = 1√
2
(|0⟩+ |1⟩) = |+⟩ , (71)

QF |1⟩ = 1√
2
(|0⟩ − |1⟩) = |−⟩ . (72)

• Many qubits

QFN =
1√
N


1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
...

1 ωN−1 ω2(N−1) · · · ω(N−1)2

 , (73)

where ω = exp(2πi/N) is the N th root of unity. The state of n qubits can be
written in

|Ψ⟩ =a0 |0⟩+ a1 |1⟩+ · · ·+ aN−1 |N − 1⟩

=a0


1
0
...
0

+ a1


0
1
...
0

+ · · ·+ aN−1


0
0
...
1

 =


a0
a1
...

aN−1

 .
(74)
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• Two qubits

QF4 =
1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 . (75)

We have some examples

i) |f⟩ = 1
2
(|0⟩+ |1⟩+ |2⟩+ |3⟩) ⇒ |f̃⟩ = QF4 |f⟩ = |0⟩.

ii) |g⟩ = |0⟩ ⇒ |g̃⟩ = QF4 |g⟩ = 1
2
(|0⟩+ |1⟩+ |2⟩+ |3⟩).

iii) |h⟩ = |1⟩ ⇒ |h̃⟩ = QF4 |h⟩ = 1
2
(|0⟩+ i |1⟩ − |2⟩ − i |3⟩).

2.6.1 Properties of quantum Fourier transform

1. QFT is unitary
Proof: an operator is unitary if its columns are orthonormal.

1

N

N−1∑
n=0

ωniωnj∗ =
1

N

N−1∑
n=0

(ωi−j)n =

{
1, i = j,

0, i ̸= j.
(76)

2. Linear shift as shown in the example above |g̃⟩ and |h̃⟩.

3. Period / wave length relationship.

2.6.2 Quantum circuit of quantum Fourier transform

The quantum circuit for the two-qubit QFT see in Fig. 5(a).

1. The part I of the circuit reads

Ĥ ⊗ 1 =
1√
2

(
1 1

1 −1

)
=

1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 . (77)

2. The part II (see Fig. 5(b)) reads

1⊗ |0⟩ ⟨0|+ (|0⟩ ⟨0|+ e2πi/2
k |1⟩ ⟨1|)⊗ |1⟩ ⟨1| =


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 e2πi/2
k

 . (78)

3. The part III reads

1⊗ Ĥ =
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 . (79)
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|q0⟩

|q1⟩

H R2

H

I II

III IV

(a)

Rk

(b)

Figure 5: (a) The quantum circuit for quantum Fourier transform. (b) Part II of circuit
(a).

4. The part IV reads

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (80)

In general QFT can be decomposed as:

Figure 6: The general QFT circuits.
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3 PHYSICAL REALISATION - TRAPPED IONS

3 Physical realisation - trapped ions

3.1 DiVincenzo criteria

DiVincenzo wrote that in order to realise a quantum computer a physical system has
to satisfy the following conditions:

1. Well-defined qubits.

2. Initialisation |0⟩ |0⟩ · · · |0⟩.

3. Universal set of quantum gates.

4. Measurements of each qubit.

5. Sufficiently long coherence times.

3.2 Trapped-ion Hamiltonian

The free Hamiltonian is composed of

Ĥ0 =
ω0

2
σ̂z

atomic internal energy

+ ωtâ
†â

trapped motion energy
, (81)

where ωt is the trap frequency. The interaction between the ion and a laser can be
expressed as

ĤI = ΩRσ̂x cos(ωt− kx̂+ ϕ), (82)

where ΩR is the coupling strength between the ion and laser, ω is the laser frequency,
and x̂ =

√
ℏ/2mωt(â+ â†) is the position of ion. In the interaction picture1

Ĥ = Û †
0ĤIÛ0 =

1

2

(
σ̂−e

−iω0t + σ̂+e
iω0t
) (

ΩRe
iϕei(ωt−η(âe−iωtt+â†eiωtt)) + h.c.

)
. (83)

Here we introduce the Lamb-Dicke parameter

η = k

√
ℏ

2mωt

=
ℏk√
2mℏωt

=
pphoton

pphonon
. (84)

Assume η ≪ 1 (which is typically of the order of 1/10), then

Ĥ ≃ ΩR

2

(
σ̂−e

−iω0t + σ̂+e
−ω0t

) [
eiωt

(
1− iη

(
âe−iωtt + â†eiωtt

))
+ h.c.

]
, (85)

for ϕ = 0. For sufficiently weak driving, after rotating wave approximation (RWA),
one obtains the following approximations

1eiÂθB̂e−iÂθ = B̂ + θ[Â, B̂] + θ2

2 [Â, [Â, B̂]] + · · · .
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Figure 7: Trapped ion transitions.

• Carrier transition ω = ω0

Ĥ ≃ Ĥc =
ΩR

2
(σ̂+ + σ̂−) =

ΩR

2
σ̂x. (86)

• Red sideband ω = ω0 − ωt

Ĥ ≃ Ĥr = −iηΩR

2

(
σ̂−â

† − σ̂+â
)
. (87)

• Blue sideband ω = ω0 + ωt

Ĥ ≃ Ĥb = −iηΩR

2

(
σ̂−â− σ̂+â

†) . (88)

Ĥ induces single qubit gates; Ĥr and Ĥb affect the ion and oscillation jointly.

3.3 Cirac-Zoller gate

Taking λ = −iηΩR

2
eiϕ and ϕ = π/2, then

Ĥr = λ
(
σ̂−â

† + σ̂+â
)
. (89)

Solving the dynamic equation under the Hamiltonian above

|g, n⟩ → cosλ
√
nt |g, n⟩ − i sinλ

√
nt |e, n− 1⟩ , (90)

|e, n− 1⟩ → cosλ
√
nt |e, n− 1⟩ − i sinλ

√
nt |g, n⟩ , (91)

where |g⟩ , |e⟩ are ground and excited state and |n⟩ is the n phonon number (trap
state).

Lets consider two inonic states and phononic state

1. A laser shining on ion 1 for λt = π/2.

2. Another laser shining on ion 2 for λt = π.

3. A laser shining on ion 1 for λt = π/2.
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Û1 Û2 Û1

|g, g, 0⟩ → |g, g, 0⟩ → |g, g, 0⟩ → |g, g, 0⟩
|g, e, 0⟩ → |g, e, 0⟩ → |g, e, 0⟩ → |g, e, 0⟩
|e, g, 0⟩ → −i |g, g, 1⟩ → i |g, g, 1⟩ → |e, g, 0⟩
|e, e, 0⟩ → −i |g, e, 1⟩ → −i |g, e, 1⟩ → − |e, e, 0⟩

Table 4: Cirac-Zoller Gate

Now we discuss the ground state motion. The average excitation within thermal
equilibrium is that

n̄ =
1

eℏω/kBT − 1
. (92)

The frequency ω ∼MHz, and the room temperature T ∼ 300K, so the average exci-
tation in room temperature n̄ ∼ 107. We need to cool the ions down to T ∼ 10−5K.
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4 Decoherence and quantum error correction

4.1 Density matrices

If a pure state |Ψj⟩ is prepared with probability pj, an expectation value of an ob-
servable Â can be calculated

⟨Â⟩ =
∑
j

pj ⟨Ψj| Â |Ψj⟩ =
∑
j,k

pj ⟨Ψj| Â |k⟩ ⟨k|Ψj⟩ =
∑
j,k

pj ⟨k|Ψj⟩ ⟨Ψj| Â |k⟩

=
∑
k

⟨k|

(∑
j

pj |Ψj⟩ ⟨Ψj|

)
Â |k⟩ = Tr

(
ρ̂Â
)
,

(93)

with the density matrix
ρ̂ =

∑
j

pj |Ψj⟩ ⟨Ψj| . (94)

The properties of density matrix are

1. ρ̂ is hermitian: ρ̂ = ρ̂†.

2. ρ̂ has unit trace: Tr ρ̂ = 1 (
∑

j pj = 1).

3. ρ̂ is positive semi-definite:

⟨ϕ| ρ̂ |ϕ⟩ =
∑
j

pj ⟨ϕ|Ψj⟩ ⟨Ψj|ϕ⟩ =
∑
j

pj| ⟨ϕ|Ψj⟩ |2 ≥ 0. (95)

4.1.1 Reduced states

Let’s consider a two-body system

|Ψ⟩ =
∑
ij

Ψij |φi⟩ ⊗ |ϕj⟩ . (96)

For the observable Â = Ô ⊗ 1, the expectation value can be calculated

⟨Â⟩ = ⟨Ψ| Ô ⊗ 1 |Ψ⟩ = Tr
(
Ô ⊗ 1 |Ψ⟩ ⟨Ψ|

)
= Tr

(
ÔTr2 |Ψ⟩ ⟨Ψ|

)
= Tr

(
Ôρ̂1

)
, (97)

where the ρ̂1 is the reduced density matrix for system 1

ρ̂1 = Tr2 |Ψ⟩ ⟨Ψ| =
∑
p

⟨ϕp|Ψ⟩ ⟨Ψ|ϕp⟩ =
∑
ijp

ΨipΨ
∗
jp |ψi⟩ ⟨ψj| . (98)

The reduced density matrix is (i) Hermitian, (ii) positive semi-definite, and (3) has
unit trace Tr ρ̂ = 1.
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4.1.2 Population and coherence

Consider the initial state |+⟩ = (|0⟩+ |1⟩)/
√
2, the density matrix is

ρ̂(0) = |+⟩ ⟨+| = 1

2
(|0⟩ ⟨0|+ |1⟩ ⟨1|+ |0⟩ ⟨1|+ |1⟩ ⟨0|). (99)

The measurements on {|0⟩ , |1⟩} basis show

⟨0| ρ̂(0) |0⟩ = 1

2
, ⟨1| ρ̂(0) |1⟩ = 1

2
. (100)

Recall the dynamics Û |+⟩ with Û = e−iωσ̂zt/2 from the Ramsey scheme, the density
operator becomes

ρ(t) = Û ρ̂(0)Û † =
1

2

(
Û |0⟩ ⟨0| Û † + Û |1⟩ ⟨1| Û † + Û |0⟩ ⟨1| Û † + Û |1⟩ ⟨0| Û †

)
=
1

2

(
|0⟩ ⟨0|+ |1⟩ ⟨1|+ e−iωt |0⟩ ⟨1|+ eiωt |1⟩ ⟨0|

)
.

(101)

The probability to project on the state |+⟩ is

⟨+| ρ̂(t) |+⟩ = 1

2
(1 + cosωt). (102)

Now we consider the initial state

ρ̂η(0) =
1

2
(|0⟩ ⟨0|+ |1⟩ ⟨1|+ η |0⟩ ⟨1|+ η |1⟩ ⟨0|), (103)

with a real parameter η ∈ [0, 1]. Then

ρ̂η(t) = Û ρ̂η(0)Û
† =

1

2

(
|0⟩ ⟨0|+ |1⟩ ⟨1|+ ηe−iωt |0⟩ ⟨1|+ ηeiωt |1⟩ ⟨0|

)
. (104)

The probability to project on the state |+⟩ is

⟨+| ρ̂η(t) |+⟩ = 1

2
(1 + η cosωt). (105)

We can write ρ̂η(0) also

ρ̂η(0) =
1− η

2
|0⟩ ⟨0|+ 1− η

2
|1⟩ ⟨1|+ η

2
(|0⟩ ⟨0|+ |1⟩ ⟨1|+ |0⟩ ⟨1|+ |1⟩ ⟨0|)

=
1− η

2
|0⟩ ⟨0|+ 1− η

2
|1⟩ ⟨1|+ η |+⟩ ⟨+| .

(106)

4.1.3 Pure states and mixed states

A density matrix with a single non-vanishing eigenvalue describes a pure state |Ψ⟩ ⟨Ψ|;
a density matrix with at least two non-vanishing eigenvalues describe a mixed state.

• For pure states Tr ρ̂2 = 1.

• For mixed states Tr ρ̂2 < 1.

21



4 DECOHERENCE AND QUANTUM ERROR CORRECTION

4.1.4 Expansion in operator basis

The operator Â can be expressed as

Â =

(
A00 A01

A10 A11

)
=

(
1
2
(A00 + A11) +

1
2
(A00 − A11)

1
2
(A01 + A10) +

1
2
(A01 − A10)

1
2
(A01 + A10)− 1

2
(A01 − A10)

1
2
(A00 + A11)− 1

2
(A00 − A11)

)
=
1

2
(A00 + A11)1+

1

2
(A00 − A11)σ̂z +

1

2
(A01 + A10)σ̂x + i

1

2
(A01 − A10)σ̂y

=
1

2
Tr Â1+

1

2
Tr
(
Âσ̂z

)
σ̂z +

1

2
Tr
(
Âσ̂x

)
σ̂x +

1

2
Tr
(
Âσ̂y

)
σ̂y,

(107)

where
Tr
(
ÂB̂†

)
=
∑
ij

⟨i| Â |j⟩ ⟨j| B̂† |i⟩ =
∑
ij

AijB
†
ji. (108)

Using σ̂2
i = 1 and σ̂†

i = σ̂i, and consider Tr Â = 1 (normalised), then

Tr
(
Â2
)
=

1

4
Tr1+

1

4

3∑
i=1

µ2
i Tr σ̂

2
i =

1

2
+

1

2

3∑
i=1

µ2
i =

1

2
+

1

2
u · u, (109)

where u = Tr Âσ̂†
i is called the Bloch vector. The operator basis are σ̂1,2,3 = σ̂x,y,z

and σ̂4 = 1.

4.2 Open quantum systems and decoherence

4.2.1 System-environment interaction

The Hamiltonian for system-environment interaction is

HSE =
∑
i

|i⟩ ⟨i|
sys

⊗ ĥi
env
. (110)

This Hamiltonian generates the time evolution

Ûi = exp

(
−it

∑
i

|i⟩ ⟨i| ⊗ ĥi

)
=
∑
i

|i⟩ ⟨i| ⊗ e−iĥit =
∑
i

|i⟩ ⟨i| ⊗ ûi(t). (111)

Suppose the initial state
|Ψ(0)⟩ =

∑
i

Ψi |i⟩ ⊗ |Φ⟩ , (112)

which is completely uncorrelated. Applying the evolution operators, we have

|Ψ(t)⟩ = Ûi |Ψ(0)⟩ =
∑
ij

Ψj |i⟩ ⟨i|j⟩ ⊗ ûi(t) |Φ⟩ =
∑
i

Ψi |i⟩ ⊗ ûi(t) |Φ⟩ . (113)
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The reduced density matrix for the system reads

ρ̂sys = Trenv

(∑
ij

ΨiΨ
∗
j |i⟩ ⟨j| ⊗ ûi(t) |Φ⟩ ⟨Φ| û†j(t)

)
,

=
∑
ij

ΨiΨ
∗
j |i⟩ ⟨j| ⟨Φ| ûi(t)û

†
j(t) |Φ⟩

=
∑
ij

ΨiΨ
∗
j |i⟩ ⟨j| ⟨Φj|Φi⟩ .

(114)

4.2.2 Quantum channels and open quantum dynamics

Let’s assume that am atom is the system a |e⟩+ b |g⟩ surrounded by the vacuum fields
|0λ⟩. Due to their interaction, the atomic field will be entangled with the vacuum
photonic field

|Ψ(0)⟩ = (a |e⟩+ b |g⟩) |0λ⟩ , (115)

|Ψ(t)⟩ = a(α |e⟩ |0λ⟩+ β |g⟩ |1⟩λ) + b |g⟩ |0λ⟩
= (aα |e⟩+ b |g⟩) |0λ⟩+ aβ |g⟩ |1λ⟩ .

(116)

The density operator of the system is

ρ̂system = Trenv |Ψ⟩ ⟨Ψ| = (aα |e⟩+ b |g⟩)(a∗α∗ ⟨e|+ b∗ ⟨g|) + |a|2|β|2 |g⟩ ⟨g| . (117)

In general, the total system |Ψ⟩ and the evolution operator Û(t) = exp
(
−iĤt

)
. Then

the evolution of the total system is given by

|Ψ(t)⟩ = exp
(
−iĤt

)
|Ψ(0)⟩ = Û(t) |Ψ(0)⟩ (118)

Let’s assume the initial total system is composed of the system and its environment
ρ̂0,total = ρ̂0⊗|ϕenv⟩ ⟨ϕenv| = |ϕenv⟩ ρ̂0 ⟨ϕenv|. To find the density operator for the system

ρ̂(t) =Trenv |Ψ(t)⟩ ⟨Ψ(t)| =
∑
i

⟨i| Û(t) |Ψ(0)⟩ ⟨Ψ(0)| Û † |i⟩

=
∑
i

⟨i| Û(t) |ϕenv⟩ ρ̂0 ⟨ϕenv| Û † |i⟩ =
∑
i

F̂i(t)ρ̂0F̂
†
i (t),

(119)

with the Kraus operators
F̂i(t) = ⟨i| Û(t) |ϕenv⟩ , (120)

which satisfy the relation ∑
i

F̂ †
i F̂i = 1. (121)

The map
ρ̂(t) = Λ(ρ̂0) =

∑
i

F̂i(t)ρ̂0F̂
†
i (t), (122)

is called the quantum channel.
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4.2.3 Properties of quantum channels

Quantum channels Λ̂(ρ) =
∑

i F̂iρ̂F̂
†
i have the properties:

1. Trace preserving
Tr
(
Λ̂(ρ)

)
= Tr ρ̂, (123)

due to
∑

i F̂
†
i F̂i = 1.

2. Positive maps

⟨Φ|
∑
i

F̂iρ̂F̂
†
i |Φ⟩ =

∑
i

⟨Φ| F̂iρ̂F̂
†
i |Φ⟩ =

∑
i

⟨Φi| ρ̂ |Φi⟩ ≥ 0, (124)

where |Φi⟩ = F̂ †
i |Φ⟩.

3. Completely positive maps: any positive maps whose extensions, i.e.

(Λ̂⊗ 1̂)(ρ̂) =
∑
i

(F̂i ⊗ 1)ρ̂(F̂ †
i ⊗ 1) (125)

are positive maps, are called completely positive maps.

4.2.4 Exemplary quantum channels

1. Dissipation channel
Consider the Kraus operators

F̂1 = |0⟩ ⟨0| , F̂2 = |0⟩ ⟨1| , (126)

which satisfies
∑

i F̂
†
i F̂i = 1. Let us apply F̂i to ρ̂:∑

i

F̂iρ̂F̂
†
i = F̂1ρ̂F̂

†
1 + F̂2ρ̂F̂

†
2 = (ρ00 + ρ11) |0⟩ ⟨0| = |0⟩ ⟨0| . (127)

We can turn this into a time-dependent process

F̂0(t) =
√

1− p(t)1, F̂1(t) =
√
p(t) |0⟩ ⟨0| , F̂2(t) =

√
p(t) |0⟩ ⟨1| , (128)

with ∑
i

F̂ †
i (t)F̂i(t) = (1− p(t))1+ p(t) |0⟩ ⟨0|+ p(t) |1⟩ ⟨1| = 1. (129)

Therefore, ∑
i

F̂i(t)ρ̂(0)F̂
†
i (t) = (1− p(t))ρ̂(0) + p(t) |0⟩ ⟨0| . (130)

2. Dephasing channel
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(a) Consider two Kraus operators

F̂1 =

√
1 + p

2
1, F̂2 =

√
1− p

2
σ̂z, (131)

with ρ̂ = ρ00 |0⟩ ⟨0|+ ρ11 |1⟩ ⟨1|+ ρ01 |0⟩ ⟨1|+ ρ10 |1⟩ ⟨0|. One obtains

F̂1ρ̂F̂
†
1 =

1 + p

2
(ρ00 |0⟩ ⟨0|+ ρ11 |1⟩ ⟨1|+ ρ01 |0⟩ ⟨1|+ ρ10 |1⟩ ⟨0|), (132)

F̂2ρ̂F̂
†
2 =

1− p

2
(ρ00 |0⟩ ⟨0|+ ρ11 |1⟩ ⟨1| − ρ01 |0⟩ ⟨1| − ρ10 |1⟩ ⟨0|), (133)

Λ̂(ρ̂) = ρ00 |1⟩ ⟨1|+ ρ11 |1⟩ ⟨1|+ p(ρ01 |0⟩ ⟨0|+ ρ10 |1⟩ ⟨0|). (134)

(b) Consider another set of Kraus operators

F̂1 =
√
p1, F̂2 =

√
1− p |0⟩ ⟨0| , F̂3 =

√
1− p |1⟩ ⟨1| . (135)

Then

Λ̂(ρ̂) =
∑
i

F̂iρ̂F̂
†
i = ρ00 |0⟩ ⟨0|+ρ11 |1⟩ ⟨1|+p(ρ01 |0⟩ ⟨1|+ρ10 |1⟩ ⟨0|). (136)

(c) Consider the Kraus operators

F̂1 =
1√
2
exp
(
i
φ

2
σ̂z

)
, F̂2 =

1√
2
exp
(
−iφ

2
σ̂z

)
. (137)

Then

Λ̂(ρ̂) = ρ00 |0⟩ ⟨0|+ ρ11 |1⟩ ⟨1|+ cosφ(ρ01 |0⟩ ⟨1|+ ρ10 |1⟩ ⟨0|). (138)

We see that there is non-uniqueness of Kraus operators.

3. Depolarising channel
Consider the Kraus operators

F̂0 =
√

1− p1, F̂1 =

√
p

3
σ̂x, F̂2 =

√
p

3
σ̂y, F̂3 =

√
p

3
σ̂z. (139)

Then

Λ̂(ρ̂) =
∑
i

F̂iρ̂F̂
†
i = (1− p)ρ̂+

p

3
(σ̂xρ̂σ̂x + σ̂yρ̂σ̂y + σ̂zρ̂σ̂z). (140)

The depolarising channel brings the original quantum state to the identity 1.

25



4 DECOHERENCE AND QUANTUM ERROR CORRECTION

4.2.5 Generalised measurements

1. von Neumann measurements / projective measurements
Consider the operator σ̂z

σ̂z |0⟩ = +1 |0⟩ , σ̂z |1⟩ = −1 |1⟩ , (141)

then
σ̂z = |0⟩ ⟨0| − |1⟩ ⟨1| . (142)

The probability that σ̂z give the result +1

P (+1) = ⟨0| ρ̂ |0⟩ = Tr(ρ̂ |0⟩ ⟨0|). (143)

In general, we define a projector

P̂ = |λi⟩ ⟨λi| . (144)

The properties of projectors are

(a) They are Hermitian.

(b) They are positive operators.

(c) They are complete.

(d) They are orthonormal.

These are also the conditions for the von Neumann measurements.

2. Generalised measurements
Let’s consider the four measurement bases for two qubits

|Φ1⟩ =
1√
2

(
|1⟩ |0⟩+ tan θ |0⟩ |0⟩+

√
1− tan2 θ |1⟩ |1⟩

)
, (145)

|Φ2⟩ =
1√
2

(
|1⟩ |0⟩ − tan θ |0⟩ |0⟩ −

√
1− tan2 θ |1⟩ |1⟩

)
, (146)

|Φ3⟩ =
√

1− tan2 θ |0⟩ |0⟩ − tan θ |1⟩ |1⟩ , (147)
|Φ4⟩ = |0⟩ |1⟩ , (148)

where 0 ≤ θ ≤ π/4, and the projectors are |Φi⟩ ⟨Φi|. We assume that we prepare
the second qubit in |0⟩. Then the four projectors will result in the projection
the first qubit on

|Ψ1⟩ =
1√
2
(|1⟩+ tan θ |0⟩), (149)

|Ψ2⟩ =
1√
2
(|1⟩ − tan θ |0⟩), (150)

|Ψ3⟩ =
√
1− tan2 θ |0⟩ , (151)
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while |Ψi⟩ ⟨Ψi| satisfy the properties (a), (b) and (c) above while they are not
orthogonal to each other. We can also consider

Π̂0 = (1− p) |0⟩ ⟨0|+ p |1⟩ ⟨1| , (152)

Π̂1 = (1− p) |1⟩ ⟨1|+ p |0⟩ ⟨0| . (153)

The two measurements are not orthogonal to each other. When p = 0, then
Π̂0 = |0⟩ ⟨0| and Π̂1 = |1⟩ ⟨1|.

4.3 Error correction

4.3.1 Classical error correction

For instance, three qubits realise one logical bit

0̄
logical qubit

= 000
physical qubits

, 1̄ = 111. (154)

The probability of two or three errors (error probability p≪ 1)

p3 + 3p2(1− p) ≪ 1. (155)

4.3.2 Quantum error correction

1. Bit flip error |0⟩ → |1⟩ , |1⟩ → |0⟩
Let us measure on {|0⟩ , |1⟩} basis, the qubit can be expressed as

|ψ⟩ = α |0⟩+ β |1⟩ , (156)

then the logical qubits ∣∣ψ̄〉 = α |000⟩+ β |111⟩ . (157)

Let us find out how to achieve the logical qubits. Consider the quantum circuits
in Fig. 8(a).

• 1st CNOT works on qubit 1 and 2:

(α |0⟩+ β |1⟩) |00⟩ → α |000⟩+ β |110⟩ . (158)

• 2nd CNOT works on qubit 1 and 3:

α |000⟩+ β |110⟩ → α |000⟩+ β |111⟩ . (159)

Then we consider the bit flip errors (Fig. 8(b)). If a bit-flip error happens on
the first qubit Q1, then the state before first CNOT gate can be α |100⟩+β |011⟩.
The qubits follow the process:

α |100⟩ |00⟩+ β |011⟩ |00⟩ → α |100⟩ |10⟩+ β |011⟩ |00⟩
→ α |100⟩ |10⟩+ β |011⟩ |10⟩
→ α |100⟩ |11⟩+ β |011⟩ |10⟩
→ α |100⟩ |11⟩+ β |011⟩ |11⟩ .

(160)
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|ψ⟩

|0⟩

|0⟩

(a)

|ψ⟩

|0⟩

|0⟩

error

|0⟩

|0⟩
(b)

Figure 8: (a) Prepare the logical qubits. (b) Bit flip error detection.

Finally, we can write the error and the corresponding results |data⟩ |ancilla⟩:

no (α |000⟩+ β |111⟩) |00⟩
Q1 (α |100⟩+ β |011⟩) |11⟩
Q2 (α |010⟩+ β |101⟩) |10⟩
Q3 (α |001⟩+ β |110⟩) |01⟩ .

To correct the bit-flip errors, we can perform σ̂x on the qubits, which can realise
|0⟩ → |1⟩ and |1⟩ → |0⟩.

2. Phase flip error |+⟩ → |−⟩ , |−⟩ → |+⟩
We encode the information on basis {|+⟩ , |−⟩}, then the physical qubit

|ψ⟩ = α |+⟩+ β |−⟩ . (161)

The corresponding logical qubits

|0̄⟩ = |+++⟩ , |1̄⟩ = |− − −⟩ , (162)

and ∣∣ψ̄〉 = α |+++⟩+ β |− − −⟩ , (163)

which are generated by Hadamard gate (see in Fig. 9).

|ψ⟩

|0⟩

|0⟩

H

H

H

Figure 9: Prepare the logical qubits for phase error detection.
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4.4 Stabiliser formalism

4.4.1 Stabilisers

Definition (Stabiliser)
A state |ψ⟩ is defined to be stabilised by operators K̂ if it is a (+1) eigenstate of K̂

K̂ |ψ⟩ = |ψ⟩ . (164)

Here, |K⟩ is called the stabilisers of |ψ⟩.

For qubit systems, let’s consider the Pauli group

P =
{
±1,±i1,±X̂,±iX̂,±Ŷ ,±iŶ ,±Ẑ,±iẐ

}
. (165)

For N qubits
PN = P⊗N . (166)

An N -qubit stabiliser state |ψ⟩ is then defined by the N generators of an Abelian (all
elements commute) sub-group, G, of the N -qubit Pauli group

G =
{
K̂i

∣∣K̂i |ψ⟩ = |ψ⟩ , [K̂i, K̂j] = 0,∀(i, j)
}
, (167)

where K̂i is Hermitian and K̂iK̂i = 1. If we encode k logical qubits into n physical
qubits, the number of stabilisers for the stabiliser code is l = n− k.
Example

1. GHZ state
1√
2
(|000⟩+ |111⟩), (168)

is stabilised by

K̂1 = X̂X̂X̂, K̂2 = ẐẐ1, K̂3 = 1ẐẐ. (169)

Note. Where is K̂4 = Ẑ1Ẑ? The four Paulis K̂1, K̂2, K̂3, K̂4 are not mutual
exclusive generators, because K̂4 = K̂2K̂3 (or any other permutation). Hence,
to generate this specific stabilizer we only need K̂1 and any two of the set
K̂2, K̂3, K̂4.

2. Shor code

|0̄⟩ = 1

2
√
2
(|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩) = |+++⟩ , (170)

|1̄⟩ = 1

2
√
2
(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩) = |− − −⟩ . (171)

3. Consider the following 7-qubit code

|0̄⟩ = 1√
8
( |0000000⟩+ |1010101⟩+ |0110011⟩+ |0001111⟩

+ |1011010⟩+ |0111100⟩+ |1101001⟩+ |1100110⟩),
(172)
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|1̄⟩ = 1√
8
( |1111111⟩+ |0101010⟩+ |1001100⟩+ |1110000⟩

+ |0100101⟩+ |1000011⟩+ |0010110⟩+ |0011001⟩).
(173)

The stabiliser set for the 7-qubit code is specified by

K̂1 = 111X̂X̂X̂X̂, K̂2 = X̂1X̂1X̂1X̂, (174)

K̂3 = 1X̂X̂11X̂X̂, K̂4 = 111ẐẐẐẐ, (175)

K̂5 = Ẑ1Ẑ1Ẑ1Ẑ, K̂6 = 1ẐẐ11ẐẐ. (176)

4.4.2 Error measurements

By the definition of stabiliser codes

K̂i |ψ⟩L = |ψ⟩L , (177)

where the subscript L denotes logical qubits. The errors are assumed to happen
in the form X̂, Ŷ , Ẑ. Denoting the error by Ê, we know that Ê and K̂ are Pauli
operators, so

[K̂i, Ê] = 0, or {K̂i, Ê} = 0. (178)

We can write
K̂iÊ |ψ⟩L = (−1)mÊK̂i |ψ⟩L = (−1)mÊ |ψ⟩L , (179)

where m = 0 if [K̂i, Ê] = 0, m = 1 if {K̂i, Ê} = 0.
Since an error-free state is already a +1 eigenstate of all the stabilisers, errors which
anticommute with any of the stabilisers will flip the relevant eigenstate giving the
eigenvalue −1.

4.4.3 Preparation of eigenstates for a Pauli group operator

Consider the circuits in Fig. 10. Before the measurement,

|0⟩ |Ψ⟩ H−→ 1√
2
(|0⟩+ |1⟩) |Ψ⟩

C−U−→ 1√
2
(|0⟩ |Ψ⟩+ |1⟩U |Ψ⟩)

H−→ 1

2
[(|0⟩+ |1⟩) |Ψ⟩+ (|0⟩ − |1⟩)U |Ψ⟩]

=
1√
2

(
|0⟩ ⊗ |Ψ⟩+ U |Ψ⟩√

2
+ |1⟩ ⊗ |Ψ⟩ − U |Ψ⟩√

2

)
.

(180)

If the measurement outcome is 0, then

|ΨF1⟩ =
1√
2
(|Ψ⟩+ U |Ψ⟩). (181)

If the measurement outcome is 1, then

|ΨF2⟩ =
1√
2
(|Ψ⟩ − U |Ψ⟩). (182)
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|0⟩

|Ψ⟩ |ΨF ⟩...

H H

U

Figure 10: Preparation of eigenstates for Û , where Û is a unitary gate, and Û2 = 1.

The two states are eigenstates of Û :

U |ΨF1⟩ =
1√
2
(U |Ψ⟩+ U2 |Ψ⟩) = 1√

2
(|Ψ⟩+ U |Ψ⟩) = |ΨF1⟩ , (183)

U |ΨF2⟩ =
1√
2
(U |Ψ⟩ − U2 |Ψ⟩) = − 1√

2
(|Ψ⟩ − U |Ψ⟩) = − |ΨF2⟩ . (184)

For instance, if Û = K̂1, we generate an eigenstate of K̂1.
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5 Properties and applications of entangled states

5.1 Definition and measures of entanglement

5.1.1 Pure states

Definition
When two qubits can be written as

|ψ⟩ = |ϕA⟩ ⊗ |ϕB⟩ , (185)

then we say |ψ⟩ is separable, otherwise |ψ⟩ is entangled.

Example
Special examples of pure states are the Bell states

|Ψ±⟩ =
1√
2
(|01⟩ ± |10⟩), (186)

|Φ±⟩ =
1√
2
(|00⟩ ± |11⟩). (187)

Consider Alice’s measurement in orthogonal bases {|α⟩ , |β⟩} on |Φ+⟩

1. If the measurement outcome is |α⟩, then the Bob’s state becomes

|Ψα⟩B = ⟨α|Φ+⟩ = ⟨α| 1√
2
(|0⟩ |0⟩+ |1⟩ |1⟩) = 1√

2
(⟨α|0⟩ |0⟩+ ⟨α|1⟩ |1⟩). (188)

2. If the measurement outcome is |β⟩, then the Bob’s state becomes

|Ψβ⟩B = ⟨β|Φ+⟩ = ⟨β| 1√
2
(|0⟩ |0⟩+ |1⟩ |1⟩) = 1√

2
(⟨β|0⟩ |0⟩+ ⟨β|1⟩ |1⟩). (189)

The states are orthogonal to each other:

B ⟨Ψα|Ψβ⟩B =
1

2
(⟨0|α⟩ ⟨β|0⟩+ ⟨1|α⟩ ⟨β|1⟩) = 1

2
⟨β|α⟩ = 0, (190)

So Alice can predict Bob’s measurement result in |ψα⟩, or |ψβ⟩.

To define the measure of entanglement for a bipartite state |Ψ⟩, let us consider the
von-Neumann entropy defined as

E = −Tr ρ̂B log2 ρ̂B, (191)

for the reduced density matrix ρ̂B = TrA |Ψ⟩ ⟨Ψ|. The von Neumann measures the
mixedness of the reduced density matrix. When E = 0, the state is separable; when
E = 1, the state is maximally entangled.

Example

ρ̂B = TrA |Φ+⟩ ⟨Φ+| =
1

2
|0⟩ ⟨0|+ 1

2
|1⟩ ⟨1| = 1

2
1. (192)

The von-Neumann entropy E for ρ̂B is 1.
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5.1.2 Mixed state entanglement

Definition
A bipartite system is separable when the density matrix ρ̂ can be written as

ρ̂ =
∑
i

piρ̂Ai ⊗ ρ̂Bi, (193)

where 0 ≤ pi ≤ 1.

When ρ̂ is a density matrix, the transpose ρ̂T is another density matrix. If ρ̂ is sepa-
rable, i.e., ρ̂ =

∑
i piρ̂Ai ⊗ ρ̂Bi, then the partial transpose ρTB =

∑
i piρ̂Ai ⊗ ρ̂TBi ≥ 0.

Otherwise when ρ̂TB < 0, ρ̂ is entangled.

Example
Consider the density matrix

ρ̂ = p |Ψ−⟩ ⟨Ψ−|+ (1− p)
1

4
=

1

4


1− p 0 0 0
0 1 + p −2p 0
0 −2p 1 + p 0
0 0 0 1− p

 . (194)

Consider the relation

A⊗B =

(
A00B A01B
A10B A11B

)
⇒ A⊗BT =

(
A00B

T A01B
T

A10B
T A11B

T

)
(195)

So the partial transpose density matrix of ρ̂ can be written as

ρ̂TB =
1

4


1− p 0 0 −2p
0 1 + p 0 0
0 0 1 + p 0

−2p 0 0 1− p

 . (196)

Then, we have to find the eigenvalues

det
(
ρTB − λ1

)
=

(
1− p

4
− λ

)2(
1 + p

4
− λ

)2

−
(p
2

)2(1 + p

4
− λ

)2

=

(
1 + p

4
− λ

)2
[(

1− p

4
− λ

)2

−
(p
2

)2]

=

(
1 + p

4
− λ

)3(
1− 3p

4
− λ

)
= 0.

(197)

The eigenvalues are

λ1 = λ2 = λ3 =
1 + p

4
> 0, λ4 =

1− 3p

4
. (198)

When 0 ≤ p ≤ 1
3
, ρ̂TB ≥ 0, the density matrix ρ̂ is separable; while 1

3
< p ≤ 1, the

density matrix ρ̂ is entangled.
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5.1.3 Multipartite entanglement

A system is multipartite entangled when the system is not bi-separable.

Example

1. Consider the GHZ (Greenberger-Horne-Zeilinger) state

|ΨGHZ⟩ =
1√
2
(|000⟩+ |111⟩). (199)

• TrA |ΨGHZ⟩ ⟨ΨGHZ| = 1
2
(|00⟩ ⟨00|+ |11⟩ ⟨11|) is mixed.

• TrB (TrA |ΨGHZ⟩ ⟨ΨGHZ|) = 1
2
(|0⟩ ⟨0|+ |1⟩ ⟨1|) is mixed.

2. Consider the state

|Ψ−⟩AB |0⟩C =
1√
2
(|01⟩ − |10⟩) |0⟩ . (200)

• TrA ρ̂ =
1
2
(|1⟩ ⟨1| − |0⟩ ⟨0|)⊗ |0⟩ ⟨0| is mixed.

• TrB ρ̂ =
1
2
(|0⟩ ⟨0| − |1⟩ ⟨1|)⊗ |0⟩ ⟨0| is mixed.

• TrC ρ̂ = |Ψ−⟩ ⟨Ψ−| is pure.

3. Consider the W-state

|ΨW⟩ =
1√
3
(|100⟩+ |010⟩+ |001⟩). (201)

• TrA |ΨW⟩ ⟨ΨW| = 1
3
|00⟩ ⟨00|+ 1

3
(|10⟩+ |01⟩)(⟨10|+ ⟨01|) is mixed.

5.2 Schmidt decomposition

Suppose |Ψ⟩ is a pure state of a bipartite system A and B.

|Ψ⟩ =
∑
i

λi |iA⟩ |iB⟩ , (202)

where λi are non-negative real numbers and
∑

i λ
2
i = 1. λi are called Schmidt

coefficients. We can find λi through the eigenequations

ρ̂A |i⟩ = λi |i⟩ , (203)

where ρ̂A = TrB ρ̂.

Proof
Any state |Ψ⟩ can be written as

|Ψ⟩ =
∑
ij

aij |i⟩ |j⟩ . (204)
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We do a singular value decomposition

a = udv, (205)

where u and v are unitary and d is non-negative diagonal

aij = uikdkkvjk. (206)

Then
|Ψ⟩ =

∑
ij

aij |i⟩ |j⟩ =
∑
ijk

uikdkkvkj |i⟩ |j⟩

=
∑
k

dkk

(∑
i

uik |i⟩

)(∑
j

vkj |j⟩

)
=
∑
k

dkk |kA⟩ |kB⟩ .
(207)

5.3 Quantum teleportation

We consider three qubits, and assume that the first two qubits are situated in Alice’s
lab and the third qubit is situated in Bob’s lab. The total system

|Ξ⟩ = |χ⟩ |Φ+⟩ = |χ⟩ ⊗ |00⟩+ |11⟩√
2

=
α |000⟩+ α |011⟩+ β |100⟩+ β |111⟩√

2
, (208)

where |χ⟩ = α |0⟩ + β |1⟩ is a general qubit. Alice performs Bell measurements on
{|Φ±⟩ , |Ψ±⟩} bases.

• If Alice’s outcome is |Φ+⟩, Bob’s state is

12 ⟨Φ+|Ξ⟩123 =
1

2
(α |0⟩+ β |1⟩)3 =

1

2
|χ⟩3 . (209)

• If Alice’s outcome is |Φ−⟩, Bob’s state is

12 ⟨Φ−|Ξ⟩123 =
1

2
(α |0⟩ − β |1⟩)3 =

1

2
σ̂z |χ⟩3 . (210)

• If Alice’s outcome is |Ψ+⟩, Bob’s state is

⟨Ψ+|Ξ⟩ =
1

2
(α |1⟩+ β |0⟩)3 =

1

2
σ̂x |χ⟩3 . (211)

• If Alice’s outcome is |Ψ−⟩, Bob’s state is

⟨Ψ−|Ξ⟩ =
1

2
(α |1⟩ − β |0⟩)3 =

1

2
σ̂zσ̂x |χ⟩3 . (212)

Therefore, Bob has the state

ρ̂B =
1

4
(|χ⟩ ⟨χ|+ σ̂z |χ⟩ ⟨χ| σ̂z + σ̂x |χ⟩ ⟨χ| σ̂x + σ̂zσ̂x |χ⟩ ⟨χ| σ̂xσ̂z) =

1

2
1. (213)

That is, no measurement on the third particle permits to infer any information on the
state |χ⟩ without Alice’s information. Furthermore, Bob cannot even tell if Alice has
actually performed a measurement. The teleportation works only if there is classical
communication between the labs. This ensures that no information is transferred
faster than the speed of light.
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Alice Bob
Channel

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩)

Figure 11: Super dense coding

5.4 Super dense coding

To send two-bit information 00, 01, 10, 11, we prepare an entangled channel between
Alice and Bob:

|Φ+⟩ =
1√
2
(|0⟩A |0⟩B + |1⟩A |1⟩B). (214)

1. 00-encoding: Alice does nothing to her qubit and sends it to Bob. Bob receive
|Φ+⟩.

2. 01-encoding: Alice performs σ̂z to her qubit then sends it to Bob. Bob receive
|Φ−⟩:

σ̂z
1√
2
(|00⟩+ |11⟩) = 1√

2
(|00⟩ − |11⟩) = |Φ−⟩ . (215)

3. 10-encoding: Alice performs σ̂x to her qubit then sends it to Bob. Bob receive
|Ψ+⟩:

σ̂x
1√
2
(|00⟩+ |11⟩) = 1√

2
(|10⟩+ |01⟩) = |Ψ+⟩ . (216)

4. 11-encoding: Alice performs σ̂y to her qubit then sends it to Bob. Bob receive
|Ψ−⟩:

σ̂y
1√
2
(|00⟩+ |11⟩) = i√

2
(|10⟩ − |01⟩) → |Ψ−⟩ . (217)

5.5 QKD example: Ekert 92

Alice and Bob can share a string of random numbers using entangled states.

1. Alice and Bob share maximally entangled qubits. Let us consider

|Ψ−⟩ =
1√
2
(|01⟩ − |10⟩) = 1√

2
(|−+⟩ − |+−⟩). (218)

2. Alice and Bob perform measurements on their qubits in {|0⟩ , |1⟩} or {|+⟩ , |−⟩}
basis (by independent random choice).

3. Alice and Bob compare the measurement bases and choose only the ones which
agree each others. If their measurement sets match, the two should have the
same measurement outcome.

4. Alice and Bob compare some of the measurement outcomes to check whether
Eve exists.
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5.6 Bell measurements

Let’s consider one of the Bell states

|Φ+⟩ =
1√
2
(|00⟩+ |11⟩) = CNOTĤ1 |0⟩1 |0⟩2 , (219)

where Ĥ1 is the Hadamard operator on the first qubit. The projection can be done
by CNOT on the given qubits followed by Hadamard:

Ĥ1CNOT |Φ+⟩ = Ĥ1CNOT · CNOTĤ1 |0⟩1 |0⟩2 = |00⟩ . (220)

The outcome is |00⟩. Similarly, after CNOT and Ĥ operations, if the measurement
outcome is |10⟩ the projection is on |Φ−⟩. If the outcome is |01⟩ then |Ψ+⟩. If the
outcome is |11⟩ then the projection is on |Ψ−⟩.

5.7 Entanglement distillation

Let us assume two pairs of non-maximally entangled states

|Φ(θ)⟩12 = cos θ |00⟩12 + sin θ |11⟩12 , (221)
|Φ(θ)⟩34 = cos θ |00⟩34 + sin θ |11⟩34 . (222)

The total system is

|Φ(θ)⟩12 |Φ(θ)⟩34 = cos2 θ |0000⟩+ sin2 θ |1111⟩+ sin θ cos θ(|0011⟩+ |1100⟩). (223)

If we perform the Bell measurement on particles 2 and 3, when the outcome is

|Ψ+⟩ =
1√
2
(|01⟩+ |10⟩), (224)

the qubits are collapsed to

|ψ⟩ = ⟨Ψ+|23 |Φ(θ)⟩12 |Φ(θ)⟩34 =
1√
2
sin θ cos θ(|01⟩+ |10⟩). (225)

The normalisation of |ψ⟩ is 1√
2
(|01⟩+ |10⟩). So the probabilities of the measurement

outcome is
P (|ψ⟩) = sin2 θ cos2 θ. (226)
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