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1 ATOM-FIELD INTERACTIONS - SEMICLASSICAL THEORY

1 Atom-field interactions - semiclassical theory

1.1 Dynamics of atom in light-field

1.1.1 The propagator

We define the propagator Û(t) via the relation

|Ψ(t)⟩ = Û(t) |Ψ(0)⟩ . (1)

Here, |Ψ(t)⟩ represents any solution to the Schrödinger equation. The propagator
adheres to the initial condition Û(0) = 1 and satisfies the Schrödinger equation

i
∂

∂t
|Ψ(t)⟩ = i

˙̂
U(t) |Ψ(0)⟩ = ĤÛ(t) |Ψ(0)⟩ . (2)

This leads to the operator equation

i
˙̂
U = ĤÛ . (3)

The adjoint operator U †(t) satisfies

−i ˙̂U † = Û †Ĥ† = Û †Ĥ. (4)

These relations yield

i
∂

∂t

(
Û Û †

)
= i

˙̂
UÛ † + iÛ

˙̂
U † = ĤÛÛ † − Û Û †Ĥ = [Ĥ, Û Û †]. (5)

With the initial condition Û(0)Û †(0) = 1, we find

Û(t)Û †(t) = Û †(t)Û(t) = 1. (6)

1.1.2 Perturbation theory

The Schrödinger equation, together with the initial condition Û(0) = 1, can be
reformulated as the integral equation

Û(t) = 1+

∫ t

0

dt′
˙̂
U(t′) = 1− i

∫ t

0

dt′Ĥ(t′)Û(t′)

= 1− i

∫ t

0

dt′Ĥ(t′)

[
1− i

∫ t′

0

dt′′Ĥ(t′′)Û(t′′)

]

= 1− i

∫ t

0

dt′Ĥ(t′)−
∫ t

0

dt′
∫ t′

0

dt′′Ĥ(t′)Ĥ(t′′)Û(t′′).

(7)

For sufficiently short times, this can be approximated as

Û(t) ≃ 1− i

∫ t

0

dt′Ĥ(t′)−
∫ t

0

dt′
∫ t′

0

dt′′Ĥ(t′)Ĥ(t′′). (8)
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1 ATOM-FIELD INTERACTIONS - SEMICLASSICAL THEORY

For this approximation to be accurate, it is crucial that the ’magnitude’ of H is suit-
ably small. Hence, working in a suitable frame becomes essential. Instead of solving
the Schrödinger equation iU̇ = HU for U , we attempt to solve for V defined by

Û = Û0V̂ , (9)

where Û0 is a unitary operator that is freely chosen. The Schrödinger equation can
now be solved for V̇ , yielding

i
˙̂
V = Û †

0ĤÛ0V̂ − iÛ †
0
˙̂
U0V̂ =

(
Û †
0ĤÛ0 − iÛ †

0
˙̂
U0

)
V̂ = ĤV̂ , (10)

with the new Hamiltonian

Ĥ = Û †
0ĤÛ0 − iÛ †

0
˙̂
U0. (11)

The objective is to find Û0 such that time-dependent perturbation theory provides a
reliable approximation.

1.1.3 Atom-light Hamiltonian

Consider an atom with the Hamiltonian Ĥ0 and the interaction Hamiltonian ĤI de-
fined as follows

Ĥ0 =
∑
j

ωj |ψj⟩ ⟨ψj| , ĤI =
∑
j,k

hjk |ψj⟩ ⟨ψk| . (12)

Here, hjk = ⟨ψj|HI |ψk⟩, and we choose the transformation Û0 as

Û0(t) = exp
(
−iĤ0t

)
=
∑
j

e−iωjt |ψj⟩ ⟨ψj| . (13)

This choice ensures that −iÛ †
0
˙̂
U0 = −Ĥ0. The transformed Hamiltonian, denoted as

Ĥ, is given by

Ĥ = Û †
0(Ĥ0 + ĤI)Û0 − iÛ †

0 U̇0 = Û †
0Ĥ0Û0 + Û †

0ĤIÛ0 − iÛ †
0
˙̂
U0 = Û †

0ĤIÛ0

=
∑
l

eiωlt |ψl⟩ ⟨ψl|
∑
jk

hjk |ψj⟩ ⟨ψk|
∑
m

e−iωmt |ψm⟩ ⟨ψm|

=
∑
jk

hjk exp[i(ωj − ωk)t] |ψj⟩ ⟨ψk| .

(14)

Here, hjk represents the oscillating term with frequency ν, and we utilize cos νt =
(eiνt + e−iνt)/2. The oscillating functions lead to a vanishing integral in the form∫ t

0
dt′(· · · ).
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1 ATOM-FIELD INTERACTIONS - SEMICLASSICAL THEORY

1.2 A two-level atom in a monochromatic light field

Consider a two-level atom characterized by resonant frequencies ωg and ωe, with the
Hamiltonian expressed as

Ĥ0 = ωg |g⟩ ⟨g|+ ωe |e⟩ ⟨e| ≃
ω

2
σ̂z, (15)

where ω = ωe − ωg. The interaction of this atom with a monochromatic light field is
described by the Hamiltonian

ĤI = ΩR (|e⟩ ⟨g|+ |g⟩ ⟨e|) cos(νt) = ΩRσ̂x cos(νt). (16)

Here, ΩR represents the Rabi frequency, proportional to the light field’s intensity,
and ν is the frequency of the light. The total Hamiltonian for the two-level atom
interacting with the monochromatic light field is given by

Ĥ =
ω

2
σ̂z + ΩRσ̂x cos(νt). (17)

To find the solution to the Schrödinger equation, we introduce the transformation

Û0 = exp
(
−iη

2
σ̂zt
)
, (18)

where η is a parameter. This transformation yields the transformed Hamiltonian Ĥ

Ĥ = U †
0ĤÛ0 − iÛ †

0
˙̂
U0

=
ω − η

2
σ̂z + ΩR

(
σ̂+e

iηt + σ̂−e
−iηt
)
cos(νt)

=
ω − η

2
σ̂z +

ΩR

2

[
σ̂+e

i(η−ν)t + σ̂−e
−i(η−ν)t

]
+

ΩR

2

[
σ̂+e

i(η+ν)t + σ̂−e
−i(η+ν)t

]
.

(19)

For the case of η = ω and under the rotating wave approximation (RWA), the trans-
formed Hamiltonian becomes

Ĥ′ =
ΩR

2

[
σ̂+e

i(ω−ν)t + σ̂−e
−i(ω−ν)t

]
. (20)

Similarly, for η = ν under the RWA, the transformed Hamiltonian is given by

Ĥ′ =
ω − ν

2
σ̂z +

1

2
ΩRσ̂x =

1

2

(
ω − ν ΩR

ΩR −(ω − ν)

)
. (21)

The eigenvalues of Ĥ′ are then determined as

λ± = ±1

2

√
(ω − ν)2 + Ω2

R = ±ΩG

2
, (22)

where ΩG =
√

(ω − ν)2 + Ω2
R is referred to as the generalized Rabi frequency. The

associated propagator is given by

exp
(
−iĤ′t

)
= 1 cos

(
ΩG

2
t

)
− i

1

ΩG/2
Ĥ′ sin

(
ΩG

2
t

)
= 1 cos

(
ΩG

2
t

)
− i

(
ω − ν

ΩG

σ̂z +
ΩR

ΩG

σ̂x

)
sin

(
ΩG

2
t

)
.

(23)
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1 ATOM-FIELD INTERACTIONS - SEMICLASSICAL THEORY

1.2.1 Resonant driving

In the scenario of resonant driving, where the light field matches the atomic transi-
tion frequency (ω − ν = 0), the system’s evolution is described by the propagator

exp
(
−iĤ′t

)
= 1 cos

(
ΩR

2
t

)
− iσ̂x sin

(
ΩR

2
t

)
. (24)

Applying this to the ground state yields the evolved state

exp
(
−iĤ′t

)
|g⟩ = cos

(
ΩR

2
t

)
|g⟩ − i sin

(
ΩR

2
t

)
|e⟩ . (25)

When combined with the initial factor Û0, the evolved state becomes

exp
(
−iω

2
σzt
)
exp
(
−iĤ′t

)
|g⟩

=exp
(
i
ω

2
t
)
cos

(
ΩR

2
t

)
|g⟩ − i exp

(
−iω

2
t
)
sin

(
ΩR

2
t

)
|e⟩

=exp
(
i
ω

2
t
)[

cos

(
ΩR

2
t

)
|g⟩ − i exp(−iωt) sin

(
ΩR

2
t

)
|e⟩
]
.

(26)

The probabilities of finding the atom in the excited state or ground state are given
by

|ce(t)|2 = sin2

(
ΩR

2
t

)
=

1

2
[1− cos(ΩRt)] , (27)

|cg(t)|2 = cos2
(
ΩR

2
t

)
=

1

2
[1 + cos(ΩRt)] . (28)

These oscillations are known as Rabi oscillations.

1.2.2 Off-resonant driving

In the case of off-resonant driving, where the light field frequency deviates signif-
icantly from the atomic transition frequency (|ν − ω| ≫ ΩR), we can make the
following approximations:

ω − ν

ΩG

=
ω − ν√

(ω − ν)2 + Ω2
R

≈ ν − ω

|ν − ω|
= ±1, (29)

ΩR

ΩG

=
ΩR√

(ω − ν)2 + Ω2
R

≈ ΩR

|ν − ω|
≪ 1. (30)

As a result, the propagator simplifies to

exp
(
−iĤ′t

)
≈ 1 cos

(
ΩG

2
t

)
− iσ̂z sin

(
ΩG

2
t

)
= exp

(
−iΩG

2
σ̂zt

)
. (31)
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1 ATOM-FIELD INTERACTIONS - SEMICLASSICAL THEORY

1.2.3 Ramsey

When ν = ω, the propagator in the interaction picture is given by

Ûx = 1 cos

(
1

2
ΩRt

)
− iσ̂x sin

(
1

2
ΩRt

)
. (32)

For a duration T = π
2ΩR

, this expression simplifies to

Ûx(T ) =
1√
2
(1− iσ̂x). (33)

Assuming the atom is initially in its ground state |g⟩, the evolved state becomes

|Ψ(T )⟩ = 1√
2
(|g⟩ − i |e⟩). (34)

A measurement of the population of the eigenstates at this point would yield a 50%
probability of finding the system in the ground state and a 50% probability in the
excited state.
Now, consider a Hamiltonian with an additional phase ϕ:

Ĥϕ =
ω

2
σ̂z + ΩRσ̂x cos(νt+ ϕ). (35)

The associated propagator is given by

Ûϕ(T ) =
1√
2
[1− i(σ̂x cosϕ+ σ̂y sinϕ)] . (36)

Applying Ûϕ(T ) to the state |Ψ(T )⟩, we obtain

|Ψ(2T )⟩ = −i exp
(
i
ϕ

2

)
sin

(
ϕ

2

)
|g⟩ − i exp

(
−iϕ

2

)
cos

(
ϕ

2

)
|e⟩ . (37)

The probability of finding the atom in the ground state or the excited state oscillates
with ϕ.

1.3 The three-level atom

Consider a three-level atom, focusing on the transitions between states |g1⟩ and |e⟩
as well as |g2⟩ and |e⟩, both experiencing frequency detuning δ. The corresponding
Hamiltonians are given by

Ĥ1 =
ΩR

2
√
2

(
|e⟩ ⟨g1| eiδt + |g1⟩ ⟨e| e−iδt

)
, (38)

Ĥ2 =
ΩR

2
√
2

(
|e⟩ ⟨g2| eiδt + |g2⟩ ⟨e| e−iδt

)
. (39)
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1 ATOM-FIELD INTERACTIONS - SEMICLASSICAL THEORY

δ

|g1⟩ |g2⟩

|e⟩

Figure 1: A three-level atom with energy levels |g1⟩, |g2⟩, and |e⟩. The detuning is
denoted by δ, and blue arrows indicate possible transitions between energy states.

where the factor 1/
√
2 is taken for convenience. Combining these transitions, the

total Hamiltonian becomes

Ĥ =
ΩR

2

(
|e⟩ ⟨g| eiδt + |g⟩ ⟨e| e−iδt

)
, (40)

where |g⟩ = (|g1⟩+ |g2⟩)/
√
2. Simplifying further, we arrive at

Ĥ =
ΩR

2
(σ̂x cos δt+ σ̂y sin δt) . (41)

The propagator at time t = 2π/δ is approximately given by

Û(t) ≃ I− i

∫ t

0

dt1Ĥ(t1)−
∫ t

0

dt1

∫ t1

0

dt2Ĥ(t1)Ĥ(t2). (42)

Evaluating at t = 2π/δ, the first-order term U (1) vanishes, and the second-order term
U (2) involves integrals requiring careful computation

Û (2)

(
2π

δ

)
= −Ω2

R

4

∫ 2π/δ

0

dt1

∫ t1

0

dt2 (σ̂x cos δt1 + σ̂y sin δt1) (σ̂x cos δt2 + σ̂y sin δt2) .

(43)
Several necessary integrals are calculated, yielding the perturbative expression

Û

(
2π

δ

)
≃ 1+ i

Ω2
R

4δ
σ̂z

(
2π

δ

)
. (44)

This expression mimics the influence of an effective Hamiltonian Ĥe = −Ω2
R

4δ
σ̂z =

Ωe

2
σ̂z. Extending to the explicit three-level case, the effective Hamiltonian is ex-

pressed as

Ĥe =
Ωe

2
(|e⟩ ⟨e| − |g⟩ ⟨g|). (45)

With eigenstates |e⟩, |g⟩, and (|g1⟩ − |g2⟩)/
√
2, the eigenvalues are Ωe

2
, −Ωe

2
, and 0.

The corresponding propagator is given by

exp
(
−iĤet

)
= exp

(
−iΩe

2
t

)
|e⟩ ⟨e|+exp

(
i
Ωe

2
t

)
|g⟩ ⟨g|+ |g1⟩ − |g2⟩√

2

⟨g1| − ⟨g2|√
2

. (46)

Applied to the initial state |g1⟩, it results in

exp
(
−iĤet

)
|g1⟩ = exp

(
i
Ωe

4
t

)[
cos

(
Ωe

4
t

)
|g1⟩+ i sin

(
Ωe

4
t

)
|g2⟩
]
, (47)

with the effective Rabi frequency Ωe = −Ω2
R/2δ.
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1 ATOM-FIELD INTERACTIONS - SEMICLASSICAL THEORY

1.4 The Bloch sphere

1.4.1 The Bloch equations

The Pauli matrices satisfy the following relations

[σ̂α, σ̂β] = 2iεαβγσ̂γ, {σ̂α, σ̂β} = 21δαβ. (48)

Expressed in terms of the eigenstates |g⟩ and |e⟩

σ̂z |g⟩ = − |g⟩ , σ̂z |e⟩ = |e⟩ , (49)
σ̂x |g⟩ = |e⟩ , σ̂x |e⟩ = |g⟩ , (50)
σ̂y |g⟩ = −i |e⟩ , σ̂y |e⟩ = i |g⟩ . (51)

The Bloch equations are defined as follows:

⟨Ψ|1 |Ψ⟩ = 1, (52)
⟨Ψ| σ̂x |Ψ⟩ = Sx, (53)
⟨Ψ| σ̂y |Ψ⟩ = Sy, (54)
⟨Ψ| σ̂z |Ψ⟩ = Sz. (55)

These equations define the Bloch vector

S =

Sx

Sy

Sz

 . (56)

1.4.2 Dynamics of the Bloch vector

Instead of the Schrödinger equation, we can describe the system dynamics using an
equation of motion for the Bloch vector S. In addition to the Schrödinger equation

∂

∂t
|Ψ⟩ = −iĤ |Ψ⟩ . (57)

For the state vector |Ψ⟩

Ṡx =
∂ ⟨Ψ|
∂t

σ̂x |Ψ⟩+ ⟨Ψ| σ̂x
∂ |Ψ⟩
∂t

=i ⟨Ψ| Ĥσ̂x |Ψ⟩ − i ⟨Ψ| σ̂xĤ |Ψ⟩
=i ⟨Ψ| [Ĥ, σ̂x] |Ψ⟩ .

(58)

To simplify, express the Hamiltonian in terms of Pauli matrices

Ĥ =
∑
j

ωj

2
σ̂j, (59)

so that
Ṡx = i

∑
j

ωj

2
⟨Ψ| [σ̂j, σ̂x] |Ψ⟩ = ωyσ̂z − ωzσ̂y. (60)

10



1 ATOM-FIELD INTERACTIONS - SEMICLASSICAL THEORY

Similarly,
Ṡy = ωzσ̂x − ωxσ̂z, (61)

Ṡz = ωxσy − ωyσx. (62)

In vector notation
Ṡ = ω × S, (63)

and
∂

∂t
∥S∥2 = ṠS + SṠ = (ω × S)S + S(ω × S) = 0. (64)

1.4.3 Averages over different states

Consider the expectation of an observable ⟨A⟩ =
∑

j pj ⟨Ψj| Â |Ψj⟩. We can thus
define the Bloch vector for the ensemble average

⟨S⟩ =
∑
j

pjSj. (65)

11



2 ATOM-LIGHT INTERACTIONS - QUANTUM THEORY

2 Atom-light interactions - quantum theory

2.1 Quantum harmonic oscillator

The Hamiltonian for a one-dimensional harmonic oscillator is given in terms of the
position operator X̂ and the momentum operator P̂ as follows

Ĥ =
P̂ 2

2m
+

1

2
mω2X̂2 = ℏω

(
P̂ 2

2mℏω
+
mω

2ℏ
X̂2

)
= ℏω

p̂2 + x̂2

2
, (66)

where the dimensionless operators are defined as

x̂ =

√
mω

ℏ
X̂, p̂ =

1√
mℏω

P̂ . (67)

These operators satisfy the commutation relation:

[x̂, p̂] =

√
mω

ℏ
1√
mℏω

[X̂, P̂ ] =
1

ℏ
[X̂, P̂ ] = i. (68)

The creation and annihilation operators are defined as

â =
1√
2
(x̂+ ip̂), â† =

1√
2
(x̂− ip̂). (69)

They satisfy the commutation relation [â, â†] = 1. Additionally, x̂ and p̂ can be
expressed in terms of these operators:

x̂ =
1√
2
(â+ â†), p̂ =

i√
2
(â† − â). (70)

Finally, the Hamiltonian takes the form

Ĥ = ℏω
(
â†â+

1

2

)
. (71)

2.2 Quantization of the light field

Light is an electromagnetic field, and to quantize it, we start from the classical de-
scription based on Maxwell’s equations

∇ ·E = 0, ∇×E = −∂B
∂t

, (72)

∇ ·B = 0, ∇×B =
1

c2
∂E

∂t
. (73)

The electromagnetic field is decomposed into standing wave modes, represented by
an ansatz

E =
∑
k

Akfk(t) sin(kz)ex, (74)

12



2 ATOM-LIGHT INTERACTIONS - QUANTUM THEORY

B =
∑
k

Akḟk(t)
ε0µ0

k
cos(kz)ey. (75)

Here, fk is the normal mode amplitude, k = 2πn/L with n = 1, 2, 3, · · · , and ∇ ·E =
∇ ·B = 0. The Maxwell equations imply the following wave equation

f̈(t) = −c2k2f(t) = −ν2kf(t), (76)

where νk = ck is termed the linear dispersion. The Hamiltonian of the electromag-
netic field is then expressed as

H =
∑
k

1

2

∫
dτ

(
ε0E

2
x +

B2
y

µ0

)
=
∑
k

ε0A
2
k

2

∫∫
dxdy

∫ L

0

[
f 2
k (t) sin

2(kz) +
1

ν2k
ḟ 2
k (t) cos

2(kz)

]
dz

=
1

2

∑
k

ε0V A
2
k

2ν2k

[
ν2kf

2
k (t) + ḟ 2

k (t)
]
.

(77)

Comparing with the one-dimensional harmonic oscillator Ĥ = 1
2
mω2X̂2 + P̂ 2

2m
, we

identify the following correspondence

m↔ ε0V A
2
k

2ν2k
, ω ↔ νk, X̂ ↔ f, P̂ = mḟ. (78)

f(t) can be written in operator form

f̂k(t) =
1

A

√
ℏνk
ε0V

(
âke

−iνkt + â†ke
iνkt
)
. (79)

Now, the light field can be quantized as

E =
∑
k

√
ℏνk
ε0V

(
âe−iνkt + â†eiνkt

)
sin(kz)ex. (80)

2.3 Fock states

With the commutation relation [a, a†] = 1, the action of the creation and annihilation
operators on a Fock state |µ⟩ with eigenvalue µ for â†â is explored

a†aa |µ⟩ = (aa† − 1)a |µ⟩ = a(a†a− 1) |µ⟩ = (µ− 1)a |µ⟩ . (81)

This implies that â |µ⟩ is an eigenstate with the eigenvalue µ− 1 of â†â. Additionally

⟨µ| a†a |µ⟩ = µ ⇒ a |µ⟩ = √
µ |µ− 1⟩ . (82)

And similarly
a† |µ⟩ =

√
µ+ 1 |µ+ 1⟩ . (83)

The operator â†â represents the photon number, and the state |µ⟩ is termed a Fock
state or number state.
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2 ATOM-LIGHT INTERACTIONS - QUANTUM THEORY

2.4 Jaynes-Cummings model

The interaction between a two-level system and a single mode of the quantized
electromagnetic field, known as the Jaynes-Cummings model, is described by the
Hamiltonian

Ĥ =
ω

2
σ̂z +

1

2
ΩRσ̂x

(
âe−iνt + â†eiνt

)
. (84)

We can Break down the evolution under specific transformations. In the lab frame,
ÛS = exp

(
iνâ†ât

)
, the interaction Hamiltonian becomes

ĤS = Û †
SĤÛS − iÛ †

S
˙̂
US =

ω

2
σ̂z + νâ†â+

1

2
ΩRσ̂x(â+ â†). (85)

In the interaction frame (or rotating frame), ÛI = exp
(
−iω

2
σ̂zt
)
, the interaction

Hamiltonian is given by

ĤI =Û
†
I ĤÛI − iÛ †

I
˙̂
UI =

1

2
ΩR

(
σ̂+e

iωt + σ̂−e
−iωt
) (
âe−iνt + â†eiνt

)
=
1

2
ΩR

[
σ̂+âe

i(ω−ν)t + σ̂+â
†ei(ω+ν)t + σ̂−âe

−i(ω+ν)t + σ̂−â
†e−i(ω−ν)t

]
.

(86)

This Hamiltonian involves four elementary processes

σ̂+â: The atom absorbs a photon and becomes excited.

σ̂+â
†: The atom emits a photon and becomes excited.

σ̂−â: The atom absorbs a photon and becomes de-excited.

σ̂−â
†: The atom emits a photon and becomes de-excited.

The last two processes violate energy conservation strongly; they are the quantum
mechanical equivalent to the terms we had neglected in the case of a classical light
field. If we neglect them in rotating wave approximation, we are left with the Hamil-
tonian

ĤIR =
1

2
ΩR

[
σ̂+âe

i(ω−ν)t + σ̂+â
†ei(ω+ν)t

]
(87)

Similarly, in the lab frame

ĤSR =
ω

2
σ̂z + νâ†â+

1

2
ΩR(σ̂+â+ σ̂−â

†). (88)

If we consider the states |g, µ⟩ and |e, µ− 1⟩. Those states are eigenstates of ĤSR,
since

ĤSR |g, µ⟩ =
(
−ω
2
+ µν

)
|g, µ⟩+ 1

2
ΩR

√
µ |e, µ− 1⟩ , (89)

ĤSR |e, µ− 1⟩ = 1

2
ΩR

√
µ |g, µ⟩+

(ω
2
+ (µ− 1)ν

)
|e, µ− 1⟩ . (90)

In terms of the basis {|g, µ⟩ , |e, µ− 1⟩} we can express this as the matrix(
−ω−ν

2
+
(
µ− 1

2

)
ν 1

2
ΩR

√
µ

1
2
ΩR

√
µ ω−ν

2
+
(
µ− 1

2

)
ν

)
, (91)

14



2 ATOM-LIGHT INTERACTIONS - QUANTUM THEORY

|g1⟩ |g2⟩

|e⟩

ν

δ

ω

Figure 2: The lambda-system.

or, in terms of Pauli-matrices as

Ĥµ = −ω − ν

2
σ̂z +

1

2
ΩR

√
µσ̂x +

(
µ− 1

2

)
ν1. (92)

In the case of resonance between atom and light-field, this reduces to

Ĥµ(ν = ω) =
1

2
ΩR

√
µσx +

(
µ− 1

2

)
ν1, (93)

with eigenstates
1√
2
(|g, µ⟩ ± |e, µ− 1⟩). (94)

2.5 The lambda System

The Hamiltonian of the Lambda-system interacting with a single-mode quantum
field in rotating wave approximation is given by

Ĥ =ω |e⟩ ⟨e|+ 0(|g1⟩ ⟨g1|+ |g2⟩ ⟨g2|) + νâ†â

+
1

2
√
2
ΩR

(
|g1⟩ ⟨e| â† + |g2⟩ ⟨e| â† + |e⟩ ⟨g1| â+ |e⟩ ⟨g2| â

)
=ω |e⟩ ⟨e|+ 1

2
√
2
ΩR

[
(|g1⟩ ⟨e|+ |g2⟩ ⟨e|)â† + (|e⟩ ⟨g1|+ |e⟩ ⟨g2|)â

]
.

(95)

In the interaction picture, the effective Hamiltonian is expressed as

Ĥ =
1

2
√
2
ΩR

[
(|g1⟩ ⟨e|+ |g2⟩ ⟨e|)â†e−iδt + (|e⟩ ⟨g1|+ |e⟩ ⟨g2|)âeiδt

]
. (96)

Applying perturbation theory up to the second order, the term Ĥ(t′)Ĥ(t′′) is com-
puted as follows

Ĥ(t′)Ĥ(t′′) =
1

8
Ω2

R

[
(|g1⟩ ⟨e|+ |g2⟩ ⟨e|)(|e⟩ ⟨g1|+ |e⟩ ⟨g2|)a†ae−iδ(t′−t′′)

+(|e⟩ ⟨g1|+ |e⟩ ⟨g2|)(|g1⟩ ⟨e|+ |g2⟩ ⟨e|)aa†eiδ(t
′−t′′)

]
=
1

8
Ω2

R (|g1⟩ ⟨g1|+ |g2⟩ ⟨g2|+ |g1⟩ ⟨g2|+ |g2⟩ ⟨g1|) a†ae−iδ(t′−t′′)

+
1

4
Ω2

R |e⟩ ⟨e| (a†a+ 1)eiδ(t
′−t′′).

(97)
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3 Coherent states and squeezed states

3.1 Coherent states

Recall the one-dimensional harmonic oscillator, for fock states |µ⟩, the expectation
values for x̂ and p̂ vanish

⟨µ| x̂ |µ⟩ = 1√
2
(⟨µ| â |µ⟩+ ⟨µ| â† |µ⟩) = 0, (98)

⟨µ| p̂ |µ⟩ = −i√
2
(⟨µ| â |µ⟩ − ⟨µ| â† |µ⟩) = 0, (99)

and the fluctuations

⟨µ| x̂2 |µ⟩ = 1

2
(⟨µ| â2 |µ⟩+ ⟨µ| ââ† |µ⟩+ ⟨µ| â†â |µ⟩+ ⟨µ| â†â† |µ⟩) = µ+

1

2
, (100)

⟨µ| p̂2 |µ⟩ = −1

2
(⟨µ| â2 |µ⟩ − ⟨µ| ââ† |µ⟩ − ⟨µ| â†â |µ⟩+ ⟨µ| â†â† |µ⟩) = µ+

1

2
. (101)

For the ground state

⟨0| x̂ |0⟩ = ⟨0| p̂ |0⟩ = 0, ⟨0| x̂2 |0⟩ = ⟨0| p̂2 |0⟩ = 1

2
. (102)

This yields

∆x̂∆p̂ = (⟨0| x̂2 |0⟩ − (⟨0| x̂ |0⟩)2)(⟨0| p̂2 |0⟩ − (⟨0| p̂ |0⟩)2) = 1

4
, (103)

which is the minimal allowed uncertainty. We can generate different states with the
same uncertainty. These states are called the coherent states, notated by |α⟩. α is
defined to

α = x̂+ ip̂, (104)

by displacing the vacuum in phase space. The displacement operator is defined as

D(α) = exp
(
αâ† − α∗â

)
. (105)

The coherent state

|α⟩ =D(α) |0⟩ = exp
(
αa† − α∗a

)
|0⟩

=exp

(
−1

2
|α|2
)
exp
(
αa†
)
exp(−α∗a) |0⟩

=exp

(
−1

2
|α|2
)
exp
(
αa†
)
|0⟩

=exp

(
−1

2
|α|2
)∑

µ

αµ(a†)µ

µ!
|0⟩

=exp

(
−1

2
|α|2
)∑

µ

αµ

µ!

√
µ! |µ⟩

=exp

(
−1

2
|α|2
)∑

µ

αµ

√
µ!

|µ⟩ .

(106)
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3 COHERENT STATES AND SQUEEZED STATES

The probability to find µ photons is thus given by the Poisson distribution.

P (µ) = exp
(
−|α|2

)(|α|2)µ
µ!

. (107)

For the expectation value of x and p with respect to a general state |Ψ⟩ one has

(⟨Ψ|D†(α))x(D(α) |Ψ⟩) = ⟨Ψ| (D†(α)xD(α)) |Ψ⟩ , (108)

(⟨Ψ|D†(α))p(D(α) |Ψ⟩) = ⟨Ψ| (D†(α)pD(α)) |Ψ⟩ , (109)

then we calculate
D†(α)xD(α) = x+

α + α∗
√
2

= x+ x0, (110)

D†(α)pD(α) = p− i
α− α∗
√
2

= p+ p0. (111)

We verify the uncertainty in position and momentum of any coherent state

⟨α|x2 |α⟩ − (⟨α|x |α⟩)2 = ⟨0|D†(α)x2D(α) |0⟩ − (⟨0|D†(α)xD(α) |0⟩)2

= ⟨0|x2 |0⟩ − (⟨0|x |0⟩)2,
(112)

⟨α| p2 |α⟩ − (⟨α| p |α⟩)2 = ⟨0|D†(α)p2D(α) |0⟩ − (⟨0|D†(α)pD(α) |0⟩)2

= ⟨0| p2 |0⟩ − (⟨0| p |0⟩)2.
(113)

3.2 Coherent states in real-space representation

The character of the displacement operator can be exemplified in the real-space
representation of wave functions.

Ψα(x) = ⟨x|α⟩ ∝ exp

(
−1

2
(x− x0)

2 + ip0x−
i

2
x0p0

)
, (114)

with x0 = (α+α∗)/
√
2 and p0 = (α−α∗)/(

√
2i). It is convenient to define the vector

|α, τ⟩ = exp
[
(αa† − α∗a)τ

]
|0⟩ , (115)

with additional scalar parameter τ . It satisfies the differential equation

∂ |α, τ⟩
∂τ

= (αa† − α∗a) |α, τ⟩ . (116)

The real-space representation of the operator (αa† − α∗a) reads

1√
2

[
α

(
x− ∂

∂x

)
− α∗

(
x+

∂

∂x

)]
=
α− α∗
√
2

x− α + α∗
√
2

∂

∂x
= ip0x− x0

∂

∂x
. (117)

We thus need to solve the equation

∂Φ

∂τ
=

(
ip0x− x0

∂

∂x

)
Φ, (118)
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3 COHERENT STATES AND SQUEEZED STATES

with the Ansatz

Φ(τ) = exp

(
−1

2
(x− fx)

2 + ifpx− iφ

)
. (119)

The initial conditions are fx(0) = fp(0) = φ(0) = 0. The derivatives

∂Φ(τ)

∂τ
=

(
(x− fx)

∂fx
∂τ

+ i
∂fp
∂τ

x− i
∂φ

∂τ

)
Φ(τ), (120)

∂Φ(τ)

∂x
= (−(x− fx) + ifp) Φ(τ). (121)

This yields

(x− fx)
∂fx
∂τ

+ i
∂fp
∂τ

x− i
∂φ

∂τ
= ip0x− x0 (−(x− fx) + ifp) . (122)

Collect all terms proportional to x

∂fx
∂τ

+ i
∂fp
∂τ

= ip0 + x0. (123)

This is solved for
∂fx
∂τ

= x0 ⇒ fx = x0τ, (124)

∂fp
∂τ

= p0 ⇒ fp = p0τ. (125)

Collecting all terms do not contain x yields

−fx
∂fx
∂τ

− i
∂φ

∂τ
= −x0fx − ix0fp, (126)

which is solved for
φ(τ) =

1

2
x0p0τ

2. (127)

With τ = 1, this gives the phase factor exp
(
− i

2
x0p0

)
.

3.3 Dynamics of coherent states

For the dynamics induced by U0(t) = exp
(
−iνa†at

)
, one obtains

U0(t) |α⟩ =U0(t) exp
(
αa† − α∗a

)
|0⟩

=U0(t) exp
(
αa† − α∗a

)
U †
0(t)U0(t) |0⟩

=U0(t) exp
(
αa† − α∗a

)
U †
0(t) |0⟩

=exp
[
αU0(t)a

†U †
0(t)− α∗U0(t)aU

†
0(t)
]
|0⟩

=exp
(
αa†e−iνt + α∗aeiνt

)
|0⟩

=D
(
αe−iνt

)
|0⟩ =

∣∣αe−iνt
〉
.

(128)
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3.4 Light-matter interaction with coherent states

Coherent states are eigenstates of the annihilation operator â:

â |α⟩ =exp

(
−1

2
|α|2
)∑

µ

αµ

√
µ!
â |µ⟩

=α exp

(
−1

2
|α|2
)∑

µ

αµ−1√
(µ− 1)!

|µ− 1⟩ = α |α⟩ .
(129)

Similarly,
⟨α| a† = α∗ ⟨α| . (130)

Coherent states are not orthogonal to each other

⟨α|β⟩ =

(
exp

(
−|α|2

2

)∑
µ

(α∗)µ√
µ!

⟨µ|

)(
exp

(
−|β|2

2

)∑
ν

βν

√
ν!

|ν⟩

)

=exp

(
−|α|2 + |β|2

2

)∑
µ,ν

(α∗)µβν

√
µ!
√
ν!

⟨µ|ν⟩

=exp

(
−|α|2 + |β|2

2

)∑
µ

(α∗β)µ

µ!
.

(131)

Now we want to find the eigenvector |Ψ⟩ of a†. Suppose that

a† |Ψ⟩ = λ |Ψ⟩ = ˜|Ψ⟩. (132)

The normalised vector is
|Ψ̃⟩√
⟨Ψ̃|Ψ̃⟩

, (133)

and ∣∣∣∣∣∣ ⟨Ψ|Ψ̃⟩√
⟨Ψ̃|Ψ̃⟩

∣∣∣∣∣∣ = 1. (134)

Normalising a† |α⟩ yields

a† |α⟩√
⟨α| aa† |α⟩

=
α† |α⟩√
|α2|+ 1

(135)

and
⟨α| a† |α⟩√
⟨α| aa† |α⟩

=
α∗√

|α2|+ 1
(136)

In the limit |α| → ∞
α∗√

|α2|+ 1
→ α∗

|α|
(137)
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with ∣∣∣∣α∗

|α|

∣∣∣∣ = 1 (138)

The relation
a† |α⟩ ≃ α∗ |α⟩ (139)

is thus a good approximation for |α| ≪ 1.

3.5 Squeezed states

Suppose we have two operators Â and B̂ and they satisfy [Â, B̂] = iĈ, then one
obtains the uncertainty ∆Â∆B̂ ≥ |⟨Ĉ⟩|/2. The minimal uncertain state of Â and B̂

∆Â∆B̂ =
|⟨Ĉ⟩|
2

. (140)

It is noteworthy that the minimal uncertainty states are related to the group of op-
erators considered. For example, coherent states are the minimal uncertainty states
concerning X̂1 and X̂2.
From the minimal uncertainty states, we can define the squeezed states, or squeezed
coherent states. If a state |ξ⟩ with commutation relation [Â, B̂] = iĈ satisfy

∆Â ≤

√
|⟨Ĉ⟩|
2

or ∆B̂ ≤

√
|⟨Ĉ⟩|
2

, (141)

then the state is called the squeezed state. It is clear that the coherent state is
squeezed in some directions.
The process of squeezing, in general, is described in terms of the operator:

Ŝ(χ) = exp
(χ
2

(
â2 − (â†)2

))
, (142)

and we find Ŝ†(χ) = Ŝ(χ)−1 = Ŝ(−χ). Using eÂB̂e−Â = B̂+[Â, B̂]+ 1
2!
[Â, [Â, B̂]]+· · · .

We choose Â = −χ
2
(â2 − (â†)2) and B̂ = â+ â†, so [Â, B̂] = −χ(â+ â†) = −χB̂.

Ŝ†(χ)(â+ â†)Ŝ(χ) = B̂ + (−χ)B̂ +
(−χ)2

2!
B̂ + · · · = (â+ â†)e−χ. (143)

Similarly, if B̂ = â− â†, then [Â, B̂] = χ(â− â†) = χB̂

Ŝ†(χ)(â− â†)Ŝ(χ) = B̂ + χB̂ +
χ2

2!
B̂ + · · · = (â− â†)eχ. (144)

So regarding to the quantum harmonic oscillator

Ŝ†(χ)x̂Ŝ(χ) = x̂e−χ, Ŝ†(χ)p̂Ŝ(χ) = p̂eχ. (145)

Regarding to the phasor diagram, the amplitude operator X̂1 and X̂2

Ŝ†(χ)X̂1Ŝ(χ) = X̂1e
−χ, Ŝ†(χ)X̂2Ŝ(χ) = X̂2e

χ. (146)

Using the displacement operator D̂(α) and squeezing operator Ŝ(ξ), we can generate
the squeezed states, like the squeezed coherent state |α, χ⟩ = D̂(α)Ŝ(χ) |0⟩, the
coherent squeezed state |χ, α⟩ = Ŝ(χ)D̂(α) |0⟩, and the vacuum squeezed state |χ⟩ =
|χ, α = 0⟩ = Ŝ(χ) |0⟩.
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4 The Wigner quasi-probability distribution

Let’s start with a classical property that we would like to be fulfilled∫ ∞

−∞
dPW (X,P ) = Pr(X),

∫ ∞

−∞
dXW (X,P ) = Pr(P ). (147)

The probability distribution of any quadrature is called a ‘marginal’. We can gener-
alize the marginal equations above into a single expression to include rotation of the
harmonic oscillator in its phase space. We then have

Pr(X, θ) = ⟨X|U(θ)ρU †(θ) |X⟩

=

∫ ∞

−∞
dPW (X cos θ − P sin θ,X sin θ + P cos θ),

(148)

where U(θ) = exp
(
−iθa†a

)
is the rotation operator.

4.1 A derivation of Wigner’s classic formula

To start our derivation, we introduce two quantities. The ‘characteristic function’,
i.e. the two-dimensional Fourier transform of the Wigner function

W̃ (U, V ) =

∫ ∞

−∞
dX

∫ ∞

−∞
dPW (X,P )e−iUX−iV P , (149)

and the Fourier-transformed probability distribution

P̃r(ξ, θ) =
∫ ∞

−∞
dXPr(X, θ)e−iξX . (150)

We use the second part of the Eqn.(148) we have

P̃r(ξ, θ) =
∫ ∞

−∞
dX

∫ ∞

−∞
dPW (X cos θ − P sin θ,X sin θ + P cos θ)e−iξX

=

∫ ∞

−∞
dX

∫ ∞

−∞
dPW (X,P )e−iξX cos θ−iξP sin θ = W̃ (ξ cos θ, ξ sin θ).

(151)

Using the first part of the Eqn.(148) we have

P̃r(ξ, θ) =
∫ ∞

−∞
dX ⟨X|U(θ)ρU †(θ) |X⟩ e−iξX

=

∫ ∞

−∞
dX ⟨X| ρU †(θ)e−iξXU(θ) |X⟩

=

∫ ∞

−∞
dX ⟨X| ρ exp(−iXξ cos θ − iPξ sin θ) |X⟩

=Tr(ρ exp(−iXξ cos θ − iPξ sin θ)).

(152)

21



4 THE WIGNER QUASI-PROBABILITY DISTRIBUTION

Letting U = ξ cos θ and V = ξ sin θ, we thus have our next important result

W̃ (U, V ) = Tr(ρ exp(−iUX − iV P )). (153)

Using the Baker-Campbell-Hausdorff formula

exp(−iUX − iV P ) = exp(iUV/2) exp(−iUX) exp(−iV P ), (154)

we have

W̃ (U, V ) = exp(iUV/2)

∫ ∞

−∞
dX ⟨X| ρ exp(−iUX) exp(−iV P ) |X⟩

=exp(iUV/2)

∫ ∞

−∞
dX ⟨X| ρ exp(−iUX) |X + V ⟩

=

∫ ∞

−∞
dQ ⟨Q− V/2| ρ |Q+ V/2⟩ exp(−iUQ),

(155)

where X = Q− V/2. Lastly, we do a inverse-Fourier transform to obtain the Wigner
function

W (X,P ) =
1

(2π)2

∫ ∞

−∞
dU

∫ ∞

−∞
dV W̃ (U, V )eiUX+iV P

=
1

(2π)2

∫ ∞

−∞
dU

∫ ∞

−∞
dV

∫ ∞

−∞
dQ ⟨Q− V/2| ρ |Q+ V/2⟩

× exp(−iUQ) exp(iUX + iV P )

=
1

(2π)2

∫ ∞

−∞
dU

∫ ∞

−∞
dV

∫ ∞

−∞
dQ ⟨Q− V/2| ρ |Q+ V/2⟩

× exp(−iUQ) exp(−iUV/2) exp(iUX) exp(iV P )

=
1

(2π)2

∫ ∞

−∞
dV

∫ ∞

−∞
dQ ⟨Q− V/2| ρ |Q+ V/2⟩ exp(iV P )

×
∫ ∞

−∞
dU exp(iU(X −Q))

=
1

2π

∫ ∞

−∞
dV

∫ ∞

−∞
dQ ⟨Q− V/2| ρ |Q+ V/2⟩ exp(iV P )δ(X −Q)

=
1

2π

∫ ∞

−∞
dV ⟨X − V/2| ρ |X + V/2⟩ exp(iV P ).

(156)

This equation is Wigner’s now famous formula

W (X,P ) =
1

2π

∫ ∞

−∞
dV eiPV

〈
X − V

2

∣∣∣∣ ρ ∣∣∣∣X +
V

2

〉
. (157)

4.2 Properties of the Wigner function

• W (X,P ) is normalized, i.e.
∫∞
−∞ dX

∫∞
−∞ dPW (X,P ) = 1.
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• W (X,P ) is real, i.e. W (X,P ) = W ∗(X,P ).

• If W (X,P ) has any negative regions, then the state is non-classical.

• The overlap Tr(AB) = 2π
∫∞
−∞ dX

∫∞
−∞ dPWA(X,P )WB(X,P ).
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5 Optical homodyne and heterodyne detection

5.1 Balanced homodyne detection

The Beam Splitter (BS) is one of the most important optical elements. It has two
spatial input modes a and b and two output modes a′ and b′. In quantum optics, the
unitary beam-splitter operator is

B̂ = exp

[
i
θ

2

(
â†b̂+ âb̂†

)]
. (158)

The most commonly used BS is 50:50 BS with θ/2 = π/4. Then we have

â′ = B̂†âB̂ =
1√
2
(â+ ib̂), (159)

b̂′ = B̂†b̂B̂ =
1√
2
(b̂+ iâ). (160)

Then we calculate the number operator observed by the photondiodes

â′†â′ =
1

2
(â† − ib̂†)(â+ ib̂) =

1

2
(â†â+ iâ†b̂− ib̂†â+ b̂†b̂), (161)

b̂′†b̂′ =
1

2
(b̂† − iâ†)(b̂+ iâ) =

1

2
(â†â− iâ†b̂+ ib̂†â+ b̂†b̂). (162)

In a balanced detector, these two photocurrents are subtracted, yielding the “differ-
ence current”

i− ∝ b̂′†b̂′ − â′†â′ = ib̂†â− iâ†b̂. (163)

Now we consider mode â to be the signal and mode b̂ is the reference, which is
also called a local oscillator (LO). We assume that the LO is powerful enough to be
treated classically, i.e., we can neglect totally the quantum fluctuations of the LO.

b̂ → αLO = |αLO|eiπ/2eiθ. (164)

Here, we introduce the phase ϕ in a convenient way to absorb the factor of i that
came from our convention for the phase in the beam-splitter operator. After this

â′

b̂′â

b̂

50:50 BS

(a)

50:50
i−−

â′â
b̂→ αLO

b̂′

θ
(b)

50:50
i−−

â′â
b̂→ αLOe

iωt

b̂′

θ
(c)

Figure 3: (a) The 50:50 beam splitter. (b) Schematic for an optical homodyne detector.
The mode b is put in a strong coherent state αLO and is mixed on a beam-splitter with
mode a that we wish to measure. (c) Schematic for an optical heterodyne detection.
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i
(P )
−−

i
(X)
−−

α
(X)
LO

α
(P )
LO

â â′
v̂

Figure 4: Dual homodyne detection. “v” denotes vacuum fluctuations.

transformation, the difference current becomes

i− ∝ |αLO|(âe−iθ + â†eiθ)

= |αLO|
(
(â+ â†) cos θ + i(â† − â) sin θ

)
=

√
2|αLO|(X̂ cos θ + P̂ sin θ)

=
√
2|αLO|X̂θ.

(165)

where X̂θ = Û †(θ)X̂Û(θ) = X̂ cos θ + P̂ sin θ = 1√
2
(âe−iθ + â†eiθ). In this way, a

balanced homodyne detector measures the quadrature component X̂θ.

5.2 Heterodyne detection

The heterodyne detection is similar to the homodyne detection; however the LO has
a different frequency.

i− ∝|αLO|
(
âe−iθe−iωt + â†eiθeiωt

)
=
√
2|αLO|

(
X̂ cos(ωt+ θ) + P̂ sin(ωt+ θ)

)
=
√
2|αLO|Xωt+θ.

(166)

We can thus see that the detector is rapidly oscillating between making a measure-
ment of X, and P , and all angles in between, in time. Thus, it can be viewed as
making a simultaneous measurement of X and P , when the difference frequency ω
is much larger than any dynamics of interest in the signal field â.

5.3 Dual homodyne detection

From the discussions above, we can write the difference currents i(X)
− and i(P )

−

i
(X)
− ∝

√
2|α(X)

LO |X̂a = |α(X)
LO |(â′ + â′†) = |α(X)

LO | 1√
2
(â+ iv̂ + â† − iv̂†)

=|α(X)
LO |

[
1√
2
(â+ â†) +

i√
2
(v̂ − v̂†)

]
=

√
2|α(X)

LO | 1√
2
(X̂a − P̂v),

(167)
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i
(P )
− ∝

√
2|α(P )

LO |X̂v = |α(P )
LO |(v̂′ + v̂′†) =

1√
2
|α(P )

LO |(v̂ + iâ+ v̂† − iâ†)

=|α(P )
LO |

[
1√
2
(v̂ + v̂†) +

i√
2
(â− â†)

]
=

√
2|α(P )

LO | 1√
2
(X̂v − P̂a).

(168)
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6 Photon counting statistics

A very useful way to categorize the photon statistics observed is to use the following
three regimes:

• Sub-Poissonian statistics: ∆2n < n̄.

• Poissonian statistics: ∆2n = n̄.

• Super-Poissonian statistics: ∆2n > n̄.

6.1 Poissonian statistics

Coherent states have Poissonian statistics

|α⟩ = e−|α|2/2
∞∑

m=0

αm

√
m!

|m⟩ , (169)

for photon number m. The amplitude

⟨n|α⟩ = e−|α|2/2 α
n

√
n!
. (170)

Then we get the probability

Pr(n) = | ⟨n|α⟩ |2 = e−|α|2 |α|2n

n!
. (171)

The mean photon number in a coherent state is

n̄ = ⟨α| a†a |α⟩ = |α|2, (172)

so we can write

Pr(n) = e−n̄ n̄
n

n!
. (173)

This expression is called the Poisson distribution. Now we calculate the variance

∆2n =
∞∑
n=0

(n− n̄)2 Pr(n) =
∞∑
n=0

(n2 − 2n̄n+ n̄2) Pr(n)

=
∞∑
n=0

n2 Pr(n)− 2n̄
∞∑
n=0

nPr(n) + n̄2

∞∑
n=0

Pr(n)

=
∞∑
n=0

n2 Pr(n)− n̄2 =
∞∑
n=0

(n2 − n+ n) Pr(n)− n̄2

=
∞∑
n=0

n(n− 1) Pr(n) + n̄− n̄2 = n̄2

∞∑
n=0

e−n̄ n̄n−2

(n− 2)!
+ n̄− n̄2

=n̄2

∞∑
n=0

Pr(n− 2) + n̄− n̄2 = n̄,

(174)
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or in a more “quantum optics style”

∆2n =⟨n2⟩ − ⟨n⟩2

= ⟨α| (a†a)2 |α⟩ − ⟨α| a†a |α⟩2

=|α|2 ⟨α| aa† |α⟩ − ⟨α| a†a |α⟩2

=|α|2 ⟨α| (1 + a†a) |α⟩ − ⟨α| a†a |α⟩2 = |α|2 = n̄.

(175)

6.2 Super-poissonian statistics

One of the example is the thermal state. Consider the Boltzmann distribution

Pr(n) =
exp(−nℏω/kBT )∑∞
n=0 exp(−nℏω/kBT )

=
xn∑∞
n=0 x

n
, (176)

where x = exp(−ℏω/kBT ). If ℏω ≫ kBT , i.e. x is small, then
∑

n x
n = 1/(1−x). The

probability becomes
Pr(n) = (1− x)xn, (177)

and we have known that

d

dx

∑
n

xn =
∑
n

nxn−1 =
1

(1− x)2
. (178)

So the mean photon number

n̄ =
∑
n

nPr(n) = x(1− x)
∑
n

nxn−1 =
x

1− x
=

1

exp(ℏω/kBT )− 1
. (179)

From this, we have
x =

n̄

1 + n̄
, (180)

so the distribution

Pr(n) =
1

1 + n̄

(
n̄

1 + n̄

)n

. (181)

which is called the Bose-Einstein distribution. Now we calculate the variance

∆2n = n̄+ n̄2 > n̄. (182)

Thus, we see that a thermal state exhibits super-Poissonian statistics.

6.3 Sub-poissonian statistics

Consider the Fock state |n⟩. The Fock states have a mean photon number

n̄ = ⟨n| a†a |n⟩ = n, (183)

and a variance
∆2n = ⟨n| (a†a)2 |n⟩ − ⟨n| a†a |n⟩2 = 0. (184)
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7 Bunching and antibunching

In the previous section, we studied the statistics of the photon number for different
states of light. In this section, we will continue to look at intensity and photon-
counting measurements, but rather focus on how these quantities are correlated in
time.
Central to this section is the second-order correlation function g(2)(τ), which is de-
fined below and describes how the intensity or photon number is correlated for a
time-separation τ . We then have three categories of temporal correlations which
are related to, but describe different physical properties from the three categories
studied in the previous section. These categories are:

• Bunched light: g(2)(0) > 1.

• Coherent light: g(2)(0) = 1.

• Antibunched light: g(2)(0) < 1.

7.1 Classical second-order intensity correlations

Let’s start with the classical “second-order correlation function”

g(2)(τ) =
⟨I(t)I(t+ τ)⟩
⟨I(t)⟩⟨I(t+ τ)⟩

. (185)

The intensity of classical field can be written as

I(t) = Ī +∆I(t), (186)

where ⟨I(t)⟩ = ⟨I(t+τ)⟩ = Ī. The light field has a coherence time τc, such that when
τ ≫ τc, intensity fluctuations will be uncorrelated, i.e. ⟨∆I(t)∆I(t+ τ)⟩ = 0. In this
case

g(2)(τ ≫ τc) =
⟨
(
Ī +∆I(t))(Ī +∆I(t+ τ)

)
⟩

Ī2

=
Ī2 + Ī⟨∆I(t+ τ)⟩+ ⟨∆I(t)⟩Ī + ⟨∆I(t)∆I(t+ τ)⟩

Ī2
= 1.

(187)

Consider τ < τc. Of particular interest, is the case where τ = 0 and we have

g(2)(0) =
⟨I2(t)⟩
⟨I(t)⟩2

≥ 1, (188)

which is a key result of the classical analysis of the second order correlation function
and indicates that the light tends to ‘bunch’ together.
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50:50

<>a′a

b

b′

τ

Figure 5: The Hanbury Brown - Twiss experimental setup to measure intensity correla-
tions.

7.2 Quantum second-order correlations

Let’s now look at the second-order correlation function in the quantum picture of
light. The setup is in Fig. 5. The second-order correlation function can be expressed
as

g(2)(τ) =
⟨n1(t)n2(t+ τ)⟩
⟨n1(t)⟩⟨n2(t+ τ)⟩

=
⟨a′†(t)b′†(t+ τ)b′(t+ τ)a′(t)⟩
⟨a′†(t)a′(t)⟩⟨b′†(t+ τ)b′(t+ τ)⟩

. (189)

Consider τ = 0

⟨a′†(t)a′(t)⟩ = 1

2
⟨(a† − ib†)(a+ ib)⟩ = 1

2
⟨a†a⟩ = 1

2
⟨n⟩, (190)

⟨b′†(t)b′(t)⟩ = 1

2
⟨(b† − ia†)(b+ ia)⟩ = 1

2
⟨a†a⟩ = 1

2
⟨n⟩, (191)

⟨a′†(t)b′†(t)b′(t)a′(t)⟩ =1

4
⟨(a† − ib†)(b† − ia†)(b+ ia)(a+ ib)⟩

=
1

4
⟨a†a†aa⟩ = 1

4
⟨a†(aa† − 1)a⟩

=
1

4
⟨a†a(a†a− 1)⟩ = 1

4
⟨n(n− 1)⟩,

(192)

as mode b is in the vacuum state. So we have

g(2)(0) =
⟨n(n− 1)⟩

⟨n⟩2
. (193)

Notably, for a single photon input g(2)(0) = 0, which indicate strong antibunching
and is highly non-classical.
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8 The Hong-Ou-Mandel effect

Consider the interference of two single photons each incident on a 50:50 beam-
splitter as shown in Fig. 6. The input is |1⟩ |1⟩, and the output is

|ψ⟩ = B̂ |1⟩ |1⟩ = B̂â†b̂† |0⟩ |0⟩ =B̂â†B̂†B̂b̂†B̂†B̂ |0⟩ |0⟩

=
(
B̂â†B̂†

)(
B̂b̂†B̂†

)
|0⟩ |0⟩ ,

(194)

where the unitary beam-splitter operator is

B̂ = exp

[
i
θ

2

(
â†b̂+ âb̂†

)]
. (195)

We have

B̂†âB̂ = â cos
θ

2
+ ib̂ sin

θ

2
, (196)

B̂†b̂B̂ = b̂ cos
θ

2
+ iâ sin

θ

2
, (197)

and we note that

B̂†
(
θ

2

)
= B̂

(
−θ
2

)
. (198)

For the 50:50 beam-splitter, θ/2 = π/4, so we have(
B̂âB̂†

)†
= B̂â†B̂† = â cos

(
−π
4

)
+ ib̂ sin

(
−π
4

)
=

1√
2

(
â− ib̂

)
, (199)(

B̂b̂B̂†
)†

= B̂b̂†B̂† = b̂ cos
(
−π
4

)
+ iâ sin

(
−π
4

)
=

1√
2

(
b̂− iâ

)
. (200)

Hence

B̂âB̂† =
1√
2

(
â† + ib̂†

)
, (201)

B̂b̂B̂† =
1√
2

(
b̂† + iâ†

)
. (202)

50:50
b, |1⟩

a, |1⟩

|ψ⟩

Figure 6: Two photon interference.
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So the output state would be

|ψ⟩ =1

2

(
â† + ib̂†

)(
b̂† + iâ†

)
|0⟩ |0⟩

=
1

2

(
â†b̂† + iâ†2 + ib̂†2 − b̂†â†

)
|0⟩ |0⟩

=
1

2

(
iâ†2 + ib̂†2

)
|0⟩ |0⟩

≃ 1√
2
(|2⟩ |0⟩+ |0⟩ |2⟩).

(203)

The “global phase” factor i can be omitted as this does not change the prediction of
measurement probabilities.

Figure 7: The Hong–Ou–Mandel dig.

Customarily the Hong–Ou–Mandel effect is observed using two photondetectors
monitoring the output modes of the beam splitter. The coincidence rate of the de-
tectors will drop to zero when the identical input photons overlap perfectly in time.
This is called the Hong–Ou–Mandel dip, or HOM dip.
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9 Cavity quantum optomechanics

An optical cavity must follows

N
λ

2
= L+ xM , N = 1, 2, 3, . . . , (204)

the optical cavity angular frequency is then

ωL(xM) =
2πc

λ
=

πcN

L+ xM
=
πcN

L

1

1 + xM/L
= ⟨ωL⟩

1

1 + xM/L
, (205)

where ⟨ωL⟩ = πcN/L is the cavity frequency for xM = 0. For xM/L≪ 1, we have

ωL(xM) ≃ πcN

L

(
1− xM

L

)
= ⟨ωL⟩

(
1− xM

L

)
. (206)

The Hamiltonian of the full system

Ĥ = ℏωM b̂
†b̂+ ℏωL(xM)â†â

≃ ℏωM b̂
†b̂+ ℏ⟨ωL⟩â†â− ℏ⟨ωL⟩

xM
L
â†â.

(207)

We now introduce the dimensionless position quadrature operator for the mechani-
cal motion

XM =
xM
x0

=
1√
2
(b̂+ b̂†), (208)

where x0 =
√

ℏ/mωM . So the Hamiltonian becomes

Ĥ = ℏωM b̂
†b̂+ ℏ⟨ωL⟩â†â− ℏg0â†â(b̂+ b̂†), (209)

where g0 is the coupling rate
g0 = ⟨ωL⟩

x0√
2L
. (210)

Figure 8: A Fabry-Perot optomechanical cavity comprising one large rigid input mirror
and one smaller mirror that can move under the influence of radiation pressure. The
cavity has a mean length L, the smaller mirror may be displaced from the mean position
by xM , and we describe the optical cavity field and the mechanical motion with annihi-
lation operators â, and b̂, respectively.
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