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1 Geometry phase

In this chapter, we explore how quantum systems behave when they experience
slow changes, a situation referred to as the adiabatic regime. We’ll unpack two
key ideas that emerge from the geometric or Berry phase: the Berry connection
and the Berry curvature. To make these concepts more tangible, we will look at a
straightforward example: a two-level system, like an electron with spin-half, in the
presence of a magnetic field.

1.1 Adiabatic quantum dynamics

1.1.1 Berry connection in the adiabatic limit

Consider the Hamiltonian Ĥ with parameter R. The system has a discrete set
of energy eigenstates, labelled by ν, then

Ĥ(R) |ν,R⟩ = Eν(R) |ν,R⟩ . (1)

Consider the slow variation in R(t) in time t, system prepared in state ν stays in state
ν in the adiabatic regime, that is, |ν,R+ δR⟩ ≃ |ν,R⟩. The eigenstates |ν,R(t)⟩ are
defined as instantaneous eigenstates at time t.

We prepare the system in an eigenstate |ψ(t = 0)⟩ = |ν,R(t = 0)⟩. The wave-
function |ψ⟩ obeys the time-dependent Schrödinger equation:

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ(R(t)) |ψ(t)⟩ . (2)

For a constant parameter R, we have |ψ(t)⟩ = exp
(
− i

ℏEν(R)t
)
|ν,R⟩. So we try

|ψ(t)⟩ = exp

(
− i

ℏ

∫ t

0

Eν(R(t′))dt′
)
|ν,R(t = 0)⟩ , (3)

and we also guess |ψ(t)⟩ in the adiabatic limit to be the form

|ψ(t)⟩ ≃ eiγν(t) |ν,R(t)⟩ , (4)

where eiγν(t) is a phase factor of modulus unity at all times. We substitute the form
Eq.(4) into both sides of the Schrödinger equation Eq.(2):

LHS = iℏ
∂

∂t
|ψ(t)⟩ = eiγν(t)

(
−ℏγ̇ν(t) + iℏṘ(t) ·∇R

)
|ν,R(t)⟩ , (5)

RHS = Ĥ(R(t)) |ψ(t)⟩ = eiγν(t)Eν(R(t)) |ν,R(t)⟩ . (6)

Then we have

Eν(R(t)) |ν,R(t)⟩ =
(
−ℏγ̇ν + iℏṘ ·∇R

)
|ν,R(t)⟩ . (7)
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Taking overlap with ⟨ν,R|, then

Eν(R(t)) = −ℏγ̇ν(t) + iℏṘ(t) · ⟨ν,R(t)|∇R |ν,R(t)⟩ . (8)

Rearranging this equation and we get

γν(t) =− 1

ℏ

∫ t

0

E(R(t′))dt′ + i

∫ t

0

⟨ν,R|∇R |ν,R⟩ · dR
dt′

dt′

=− 1

ℏ

∫ t

0

E(R(t′))dt′ + i

∫
C

⟨ν,R|∇R |ν,R⟩ · dR

=γν,dyn + γν,geom,

(9)

where C is the path in parameter space from R(0) to R(t). Here, we get two phases:
the dynamic phase and the geometric phase.

γν,dyn = −1

ℏ

∫ t

0

E(R(t′))dt′, (10)

γν,geom = i

∫
C

⟨ν,R| ∇R |ν,R⟩ · dR =

∫
C

Aν(R) · dR. (11)

We know that eiγ is a phase factor of modulus unity at all times, which means
⟨ν|∇Rν⟩ should be purely imaginary (Aν(R) is purely real). Now we prove this
property:

∇R(⟨ν,R|ν,R⟩) = ⟨∇Rν|ν⟩+ ⟨ν|∇Rν⟩ = ⟨ν|∇Rν⟩∗ + ⟨ν|∇Rν⟩ = 0. (12)

The quantity Aν(R) here is called Berry connection:

Aν(R) = i ⟨ν,R| ∇R |ν,R⟩ = − Im ⟨ν,R| ∇R |ν,R⟩ . (13)

1.1.2 Example: two-level system

Consider a particle with spin S = 1/2 as an analogy for a two-level system. The
spin in a Zeeman field with the Hamiltonian

Ĥ = d(t) · σ̂ = dxσ̂x + dyσ̂y + dzσ̂z =

(
dz dx − idy

dx + idy −dz

)
, (14)

where d = (dx, dy, dz) = d(sin θ cosϕ, sin θ sinϕ. cos θ). It shows that

Ĥ = d

(
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

)
. (15)

The eigenvalues of Ĥ are ±d. Suppose the magnetic field rotates by 2π and ϕ(t) =
2πt/T . d and θ are constants when the system evolves from t = 0 to t = T . The
instantaneous eigenstates at given ϕ are denoted as |±, ϕ⟩:

E+ = +d, |+, ϕ⟩ = e−iϕ cos(θ/2) |↑⟩+ sin(θ/2) |↓⟩ , (16)
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E− = −d, |−, ϕ⟩ = e−iϕ sin(θ/2) |↑⟩ − cos(θ/2) |↓⟩ . (17)

If we prepare the system in the state |+⟩, after one full 2π-rotation of d, the phases
are

γ+,dyn = −1

ℏ

∫ T

0

E+dt = −d
ℏ
T, (18)

γ+,geom = i

∫ 2π

0

⟨+, ϕ| ∂ϕ |+, ϕ⟩ dϕ = i

∫ 2π

0

(−i) cos2(θ/2)dϕ = π(1 + cos θ). (19)

Similarly, if we prepare the system in the state |−⟩, after one full 2π-rotation of d,
the phases are

γ−,dyn = −1

ℏ

∫ T

0

E−dt =
d

ℏ
T, (20)

γ−,geom = i

∫ 2π

0

⟨−, ϕ| ∂ϕ |−, ϕ⟩ dϕ = i

∫ 2π

0

(−i) sin2(θ/2)dϕ = π(1− cos θ). (21)

The Berry phase γν,geom depends on how the instantaneous eigenstates |ν,R⟩ are
defined. If we choose σ̂z as the quantization axis, i.e., θ = π/2. So the geometric
phase of |±⟩ is γ±,geom = π.

1.2 Berry curvature

1.2.1 Gauge degree of freedom

The instantaneous eigenstates |ν,R⟩ are chosen to be single-valued and differ-
entiable. If we change instantaneous eigenstates by a single-valued, differentiable
phase factor eiχ(R):

|ν,R⟩ → eiχ(R) |ν,R⟩ . (22)

We call the choice of χ(R) a gauge choice. Then we find the Berry connection
Aν(R) will be changed as well

Aν(R) = i ⟨ν,R|∇R |ν,R⟩ → i ⟨ν,R| e−iχ(R)∇Re
iχ(R) |ν,R⟩

= i ⟨ν,R| (i∇Rχ+∇R) |ν,R⟩
= Aν(R)−∇Rχ(R).

(23)

For a closed path C over parameter space, the geometry phase becomes

γgeom =

∮
C

Aν(R) · dR →
∮
C

Aν(R) · dR− [χ(R(T ))− χ(R(0))]
∆χ=2πn

. (24)

Therefore, as the geometric phase γν,geom changes, the geometric phase factor eiγν,geom

is gauge-invariant.

We can then learn from the magnetic analogy where Aν is a vector potential -
the magnetic flux density B = ∇×A is gauge invariant. Similarly, we can define

Bν = ∇R ×Aν(R) (25)
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as a gauge invariant. This is called the Berry curvature. By using the Einstein
summation convention

Bi = εijk∂jAk = iεijk∂j ⟨ν|∂kν⟩ = iεijk (⟨∂jv|∂kν⟩+ ⟨ν|∂j∂kν⟩) = iεijk ⟨∂jv|∂kν⟩ ,
(26)

the Berry curvature can be expressed as

Bν = i ⟨∇Rν| × |∇Rν⟩ . (27)

Now we use non-degenerate perturbation theory to find |∇Rν⟩. Consider a small
variation δR

|ν,R+ δR⟩ ≃ |ν,R⟩+ δR ·
∑
µ ̸=ν

|µ,R⟩ ⟨µ,R| (∇RĤ) |ν,R⟩
Eν(R)− Eµ(R)

= |ν,R⟩+ δR ·∇R |ν,R⟩ .
(28)

Then we have

|∇Rν⟩ =
∑
µ ̸=ν

|µ,R⟩ ⟨µ,R| (∇RĤ) |ν,R⟩
Eν(R)− Eµ(R)

. (29)

Therefore, the Berry curvature can also be expressed as

Bν = i
∑
µ ̸=ν

⟨ν| (∇RĤ) |µ⟩ × ⟨µ| (∇RĤ) |ν⟩
(Eν(R)− Eµ(R))2

. (30)

It should be noted that

Bν = ∇R ×Aν ↔
∮
C

Aν · dR =

∫
D

Bν · dS, (31)

where D is a surface constructed by the closed contour C. The geometry phase can
also be expressed as

γν,geom =

∮
C

Aν · dR =

∫
D

Bν · dS. (32)

1.2.2 Two-level system revisited

Recall the situation that a spin-half electron in a magnetic field d we just dis-
cussed in the Sec. 1.1.2, the Zeeman Hamiltonian is

Ĥ = d · σ̂, (33)

which associate with the eigenfunctions

Ĥ |±,d⟩ = ±|d| |±,d⟩ , (34)

where |±,d⟩ is the eigenstates of Ĥ. So the Berry curvature

B+ = i
⟨+|σ |−⟩ × ⟨−|σ |+⟩

2|d|2
. (35)
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If we choose êz as quantisation axis, i.e., d ∥ (0, 0, 1). Then the Berry curvature
becomes

B+ =i
⟨+| σ̂1 |−⟩ (e1 × e2) ⟨−| σ̂2 |+⟩

(2d)2
− (1 ↔ 2)

=i
⟨+| σ̂1 |−⟩ ⟨−| σ̂2 |+⟩ − ⟨+| σ̂2 |−⟩ ⟨−| σ̂1 |+⟩

(2d)2
ê3 = − d

2|d|3
.

(36)

Then we calculate the geometry phase. If we choose the hemisphere of radius d that
the value of Barry curvature is a constant, then∫

D

B+ · dS = − 1

2d2
2πd2 = −π. (37)

We can add a phase 2π, i.e., γ+,geom = (−π) + 2π = π so that the geometry phase is
single-values.

Recall that the energy levels are ±|d|. At d = 0, there is no field and the two
spin states are degenerate in energy. In other words, the origin is special because
the system has a degeneracy there. In general, this degeneracy appears as a result of
fine-tuning all three parameters instead of as a consequence of a symmetry. This is
sometimes called an “accidental degeneracy”. The degenerate point in parameter
space is also called a diabolical point.

The geometric phase factor for a closed loop C in the parameter space of a
two-level system is

exp[iγ±,geom(C)] = exp

[
∓ i

2
Ω(C)

]
(38)

where Ω(C) is the solid angle subtended by the loop C at the degeneracy point
in parameter space.

8



2 Electron bands

In this chapter, we talk about the Bloch’s theorem. Then we introduce two
models about electrons in solid: nearly free electron model (electrons in a weak
periodic potential) and tight binding model (electrons in a strong periodic potential).

2.1 Bloch’s theorem

Consider an electron in the presence of a crystalline array of positive nuclei at
the lattice sites R. It experiences a periodic potential V . The Hamiltonian is

Ĥ = − ℏ2

2m
∇2 + V (r), V (r +R) = V (r) for any lattice vector R. (39)

Bloch’s theorem tells us that the electron eigenstates ψ(r) are also periodic, except
for a plane-wave phase factor when we go from one lattice site to another:

ψαk(r +R) = eik·Rψαk(r) for any lattice vector R (k ∈ 1st Brillouin zone). (40)

Given Bloch’s result, it is natural to factor out the plane-wave part from ψαk. An
equivalent statement of the theorem is that the eigenstates in a periodic potential
can be written as:

ψαk(r) = eik·rϕαk(r) with ϕαk(r) = ϕαk(r +R) (k ∈ 1st Brillouin zone). (41)

2.2 *Nearly free electron model

The nearly free electron model (NFE model) describes the behavior of electrons
in metals and other conductive materials. This model is an extension of the free
electron gas model, with modifications to account for the influence of the periodic
potential of the lattice on electron motion. In the free electron model, electrons
are assumed to move freely without any external forces, whereas in the NFE model,
electrons mostly behave like free electrons but are subjected to slight scattering due
to the periodic potential of the crystal lattice.

2.3 Tight binding model

The tight binding model describes the behavior of electrons in crystals, partic-
ularly effective for insulators and semiconductors. Unlike the NFE model, the tight
binding model focuses on the strong coupling between atoms in the crystal.

The atom at lattice site R will have several bound states, labelled by α. We can
denote the state as |R, α⟩. Instead of N degenerate states at energy ϵα, we have N
delocalized eigenstates with a spread of eigenenergies centered at ϵα, forming an
energy band, labelled by α.
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2.3.1 Tight binding Hamiltonian

These site-localized states |R, α⟩ are often called Fock states. Since the bound
state label does not change in the hopping, we can consider each energy band sep-
arately and drop the α label: |R, α⟩ → |R⟩. In this basis, we can write the electron
state as

|ψ⟩ =
∑
R

cR |R⟩ , (42)

where cR is the probability amplitude for finding the electron at site R. If we only
consider the interaction between the nearest-neighbour pairs, the Hamiltonian for
the tight binding model is

Ĥ = ϵα
∑
R

|R⟩ ⟨R| − tα
∑

⟨R,R′⟩

(|R⟩ ⟨R′|+ |R′⟩ ⟨R|) , (43)

where the sign ⟨· · · ⟩ means that we are summing over all nearest-neighbour pairs,
R and R′, on the lattice. ϵα is the on-site energy, or the bound-state energy. tα is the
hopping integral.

2.3.2 Energy eigenstates

If we apply the tight binding Hamiltonian to the electron state

Ĥ |ψ⟩ =ϵα
∑
R,S

cR |S⟩ ⟨S|R⟩ − tα
∑

R,⟨S,S′⟩

cR(|S⟩ ⟨S′|R⟩+ |S′⟩ ⟨S|R⟩)

=ϵα
∑
S

cS |S⟩ − tα
∑
⟨S,S′⟩

(cS′ |S⟩+ cS |S′⟩).
(44)

To see what happens at site R, we take overlap of both sides with ⟨R|

⟨R| Ĥ |ψ⟩ = ϵαcR − tα
∑
⟨S,S′⟩

(cS′δR,S + cSδR,S′) = ϵαcR − tα
∑
δ

cR+δ, (45)

where the set of vectors δ contains all the vectors joining R to its nearest neighbours.
For an eigenstate with energy E, we must have ⟨R| Ĥ |ψ⟩ = Eα ⟨R|ψ⟩, which gives

ϵαcR − tα
∑
δ

cR+δ = EαcR for all sites R, (46)

where cR = eik·R. So the eigenvectors and eigenevalues can be expressed in terms
of k:

|k, α⟩ = 1√
N

∑
R

eik·R |R, α⟩ , Eαk = ϵα − tα
∑
δ

eik·δ (k ∈ 1st Brillouin zone).

(47)
The factor 1/

√
N in |k, α⟩ is the normalization factor for N sites. For a 2D square

lattice model with lattice spacing a, the energy spectrum is

Eαk = ϵα − 2tα[cos(kxa) + cos(kya)]. (48)
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3 Tight binding chains

In this chapter, we talk about the alternating tight binding chains.

3.1 Number and current on a lattice

Let us consider an infinite one-dimensional (spinless) chain where an electron
at site n can hop to nearest neighbours at n± 1. The Hamiltonian is given by

Ĥ = −
∑
n

vn (|n⟩ ⟨n+ 1|+ |n+ 1⟩ ⟨n|) (49)

where vn is the hopping integral for the link between site n and n+ 1. The number
operator at site m is

n̂m = |m⟩ ⟨m| . (50)

The number of the electrons in the left block denoted as N̂L =
∑

n≤nL
|n⟩ ⟨n|. In

terms of N̂L, using Ehrenfest theorem

∂⟨N̂L⟩
∂t

=
i

ℏ
⟨[Ĥ, N̂L]⟩ = −⟨ĴnL

⟩ (51)

where Ĵ is the current operator for tight binding chains. To calculate the commuta-
tor, we can divide the Hamiltonian into three parts: Ĥ = ĤL + ĤR + ĤLR, where ĤR

involves links inside the right block only, ĤL involves links inside the left block only,
and ĤLR contains the link joining the left and right blocks together. First of all, we
calculate [ĤL, N̂L]:

[ĤL, N̂L] =
∑
n<nL

vn[|n⟩ ⟨n+ 1| , N̂L]

=
∑
n<nL

∑
m≤nL

vn [|n⟩ ⟨n+ 1| , |m⟩ ⟨m|]

=
∑
n<nL

∑
m≤nL

vn(|n⟩ ⟨n+ 1|m⟩ ⟨m| − |m⟩ ⟨m|n⟩ ⟨n+ 1|)

=
∑
n<nL

vn(|n⟩ ⟨n+ 1| − |n⟩ ⟨n+ 1|) = 0.

(52)

Similarly, we find that [ĤR, N̂L] = [ĤL, N̂L] = 0. Now we calculate [ĤLR, N̂L], where
ĤLR = −vnL

(|nL⟩ ⟨nL + 1|+ |nL + 1⟩ ⟨nL|).

[|nL⟩ ⟨nL + 1| , N̂L] =
∑
m≤nL

(|nL⟩ ⟨nL + 1|m⟩ ⟨m| − |m⟩ ⟨m|nL⟩ ⟨nL + 1|)

=− |nL⟩ ⟨nL + 1| ,
(53)

nL

JnL

Figure 1: An infinite one-dimensional chain.
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[|nL + 1⟩ ⟨nL| , N̂L] =
∑
m≤nL

(|nL + 1⟩ ⟨nL|m⟩ ⟨m| − |m⟩ ⟨m|nL + 1⟩ ⟨nL|)

= |nL + 1⟩ ⟨nL| .
(54)

So the commutator is

[Ĥ, N̂L] = [ĤLR, N̂L] = −vnL
(|nL + 1⟩ ⟨nL| − |nL⟩ ⟨nL + 1|), (55)

and the current operator is given by

Ĵn =
i

ℏ
vn (|n+ 1⟩ ⟨n| − |n⟩ ⟨n+ 1|) . (56)

If we choose the Bloch state |ψk⟩ = 1√
N

∑
m eikma |m⟩, the current due to each Bloch

state is

⟨ψk| Ĵn |ψk⟩ =
ivn
ℏN

∑
m,m′

eik(m−m′)a ⟨m′| (|n+ 1⟩ ⟨n| − |n⟩ ⟨n+ 1|) |m⟩

=
ivn
ℏN

(
e−ika − eika

)
=

2vn
ℏN

sin(ka)

=
1

Na
number density

× 2vna

ℏ
sin(ka)

group velocity

.

(57)

We see that the group velocity here is consistent with the group velocity as defined
from the dispersion relation: vg = ∂Ek/∂(ℏk) where Ek = −2vn cos(ka) is the energy
of the eigenstate |ψk⟩.

3.2 Variations on a chain

3.2.1 Alternating chain

Now, let’s discuss the tight binding chain with alternating hoppings v and w.
The unit cell labelled by n, and there are two sites A and B per unit cell. The on-site
electron states are denoted as |n,A⟩ and |n,B⟩. The Hamiltonian is given by

Ĥalt = −
∑
n

[v(|n,A⟩ ⟨n,B|+ h.c.) + w(|n,B⟩ ⟨n+ 1, A|+ h.c.)] . (58)

The eigenstate is given by

|ψk⟩ =
∑
n

(cn,A |n,A⟩+ cn,B |n,B⟩), (59)

A B A B A B

vv vw w

n n+ 1 n+ 2

Figure 2: An one-dimensional alternating chain.
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Figure 3: Energy spectrum for a tight binding chain. The dashed line corresponds to an
uniform chain with hopping integral t = 1.5. The solid line corresponds to an alternating
chain with hopping integrals v = 1.0 and w = 2.0. This has a band gap of 2|v−w| = 2.0.

where cn,A = cAe
ikna and cn,B = cBe

ikna due to the Bloch theorem. The Schrödinger
equation Ĥalt |ψ⟩ = E |ψ⟩ gives

Ecn,A = −wcn−1,B − vcn,B, (60)
Ecn,B = −wcn+1,A − vcn,A, (61)

which equivalent to

−
(

0 v + we−ika

v + weika 0

)(
cA
cB

)
= hk

(
cA
cB

)
= E

(
cA
cB

)
. (62)

Then det(hk − E1) = 0 gives the energy spectrum

Ek = ±
√
v2 + w2 + 2vw cos ka = ±

√
(v − w)2 + 4vw cos2

(
ka

2

)
, (63)

with k in the first Brillouin zone, i.e., −π/a < k ≤ π/a. For an uniform chain, we
have v = w = t, then the band energy

Ek = ±2t cos(ka/2). (64)

3.2.2 Sublattice symmetry

The dispersion relations of the two energy bands of the alternating chain are ex-
actly symmetric under reflection on the E = 0 axis. This property is called bipartite.
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The important ingredients are that the two sites have the same on-site energy (zero
in this case) and that the Hamiltonian only connects sites of different sublattices.
Let us call this the sublattice symmetry. A general Hamiltonian that possesses this
property is

Ĥsym = −
∑
m,n

(tmn |m,A⟩ ⟨n,B|+ tnm |n,B⟩ ⟨m,A|), (65)

with tnm = t∗mn for a Hermitian Hamiltonian. Let an eigenstate at energy E be

|ψ⟩ =
∑
n

(cn,A |n,A⟩+ cn,B |n,B⟩). (66)

Substituting this into the Hamiltonian and solving for Ĥsym |ψ⟩ = E |ψ⟩ gives

−
∑
m

tnmcm,B = Ecn,A, −
∑
n

tnmcm,A = Ecn,B. (67)

If we change the sign on every other site, i.e., c̃n,A = cn,A and c̃n,B = −cn,B, then the
new state is

|ψ̃⟩ =
∑
n

(c̃n,A |n,A⟩+ c̃n,B |n,B⟩) =
∑
n

(cn,A |n,A⟩ − cn,B |n,B⟩) (68)

is also an eigenstate with energy −E. This proves that the energy spectrum of Ĥsym

has reflection symmetry in E = 0 for a hopping Hamiltonian that only hops between
sites in different sublattices.

More formally, we have performed a transformation |ψ⟩ → Γ̂|ψ̃⟩. The symmetry
operator Γ̂ performs Γ̂ |n,A⟩ = |n,A⟩ and Γ̂ |n,B⟩ = − |n,B⟩. So the symmetry
operator can be expressed as

Γ̂ =
∑
n

(|n,A⟩ ⟨n,A| − |n,B⟩ ⟨n,B|) , (69)

and we also find
Ĥ ′

sym = Γ̂ĤsymΓ̂ = −Ĥ. (70)

This property is named chiral symmetry.

3.3 Polyacetylene and Peierls instability

Consider the structure of polyacetylene in Fig. 4, the structural change to alter-
nating bond lengths is called “dimerization” because each unit cell now contains a
dimer of carbon atoms.

Recall the tight binding model, we expect the hopping integral between two sites
at x and x′ to decay exponentially with the distance between the sites: t ∝ e−|x−x′|/xt

where xt is a length scale determined by the microscopic atomic physics. If we move
the sites towards / away from each other by a distance u = δxt, the hopping should
strengthen / weaken. We expect the strong (v) and weak (w) hopping integrals to
be:

v(δ) = teu/xt = teδ ≃ t(1 + δ), w(δ) = te−u/xt = te−δ ≃ t(1− δ). (71)
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Figure 4: The structure of polyacetylen.
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Figure 5: An alternating chain is created by displacing the A and B sites by distances u
and −u respectively from their positions in a uniform chain.

Then the energy spectrum

Ek(δ) =±
√
v2 + w2 + 2vw cos ka

=±
√
(v − w)2 + 4vw cos2(ka/2)

=± 2t

√
sinh2 δ + cos2(ka/2).

(72)

Furthermore, we find that the missing ingredient is the elastic energy for the
displacement of the atoms. The total Hamiltonian is given by

ĤSSH = Ĥalt + Ĥelastic, (73)

Ĥelastic =
κ

2

∑
n

[(un,A − un,B)
2 + (un,B − un+1,A)

2], (74)

where κ is a bond stiffness determined by microscopic atomic physics. This model
of electron band structure with elastic energy for polyacetylene is known as the Su-
Schrieffer-Heeger model. Here, we have ignored the kinetic energy of the carbon
atoms and assumed that they are stationary on the timescale of electronic motion
(ℏ/hopping integral). This is known as the Born-Oppenheimer approximation.

For un,A = −un,B = u, the total energy of the system is Egnd = Eelastic + Eelec,
where

Eelastic =
κ

2

[
(2u)2 + (−2u)2

]
N = 4κx2tNδ

2, (75)

Eelec = 2
∑
k∈BZ

Ek,− = −4tNa

∫ π/a

−π/a

√
sinh2 δ + cos2(ka/2)

dk

2π
. (76)

For a small dimerization (|δ| ≪ 1)

Egnd(δ)− Egnd(0)

N
≃
[
4κx2t −

8t

π

(
ln 2 +

1

4

)]
δ2 − 4t

π
δ2 ln

1

|δ|
< 0. (77)
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Even if the first term quadratic in δ is positive (κx2t ≫ t), we see that the second
term involving ln(1/δ) makes this energy change negative for sufficiently small δ.
So, it is always advantageous to dimerise, no matter how stiff the carbon backbone
is! We come to the conclusion that the dimerization occurs spontaneously to
lower the energy of the system. This phenomenon is known as a Peierls instability.
The translational symmetry by one C-C bond is broken in dimerised state is called
spontaneous symmetry breaking.
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4 Edge states on chains

In this chapter, we explore further the tight-binding model with alternating hop-
ping integrals as a model for the dimerized phase of the Su-Schrieffer-Heeger (SSH)
model for polyacetylene. We will find that it has an interesting eigenstate localised
at an edge. The Hamiltoniann for the alternating chain is

Ĥalt = −
∑
n

[v(|n,A⟩ ⟨n,B|+ h.c.) + w(|n,B⟩ ⟨n+ 1, A|+ h.c.)] . (78)

For an infinite chain, these amplitudes obey the equation:

Ecn,A = −wcn−1,B − vcn,B, (79)
Ecn,B = −wcn+1,A − vcn,A. (80)

4.1 Semi-infinite SSH chains

For a semi-infinite SSH chain, it is clear that we have two possible terminations.
The key point is whether first bond is weak or strong. For the convenience of calcu-
lation, we set the convention that B-site is always on the left and the first hopping
integral is w.

· · ·
A B A B A B

w wv v v

· · ·
B A B A B A B

w w wv v v

Figure 6: Two possible terminations of a semi-infinite alternating chain.

4.1.1 Fully dimerized limit

Consider the case w = 0, the dimer at site n is

Ĥdimer = −v(|A⟩ ⟨B|+ |B⟩ ⟨A|), (81)

with two electron eigenstates and the eigenvalues:

|ψ⟩ = 1√
2
(|A⟩ ± |B⟩), E = ∓v. (82)

Alternatively, we can also take the limit of v = 0. Then, the system also consists of
dimers and the electronic eigenstates on each dimer have energies ±w.

We now truncate the infinite chain to produce a semi-infinite chain. In the limit
v → 0, the eigenstates of the system are the same as the one for the infinite chain.
However, if we take the limit w → 0, we are left with an isolated atom at the edge.
This has energy E = 0 since we have constructed the Hamiltonian to have zero
on-site energy.
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Figure 7: The energy spectrum when w = 0.

4.1.2 Away from isolated dimers

Now we consider w ≪ v as a perturbation and perform perturbation theory in
w/v. Now we find even at non-zero w, the energy of this localized state is exactly
zero! This is a consequence of the sublattice symmetry of the problem.

In summary, edge state exists inside the band gap for propagating states for
w < v.

4.1.3 Exact solution for the edge state of a semi-infinite chain

Suppose the B-site is on left edge, and the first hopping integral is denoted as
w. We can write the Hamiltonian for the semi-infinite SSH chain as

Ĥ = −
∑
n=1

[v (|n,A⟩ ⟨n,B|+ h.c.) + w (|n,A⟩ ⟨n− 1, B|+ h.c.)] . (83)

The eigenstate at energy E is

|ψ⟩ =
∑
n=0

(cn,A |n,A⟩+ cn,B |n,B⟩), (84)

with c0,A = 0 as the hard-well boundary condition at |0, A⟩. The eigenfunction gives

Ĥ |ψ⟩ =−
∑
n=0

∑
m=1

[
v(|m,A⟩ ⟨m,B|+ |m,B⟩ ⟨m,A|)

+ w(|m,A⟩ ⟨m− 1, B|+ |m− 1, B⟩ ⟨m,A|)
]
(cn,A |n,A⟩+ cn,B |n,B⟩)

=−
∑
n=1

(vcn,B |n,A⟩+ vcn,A |n,B⟩+ wcn,B |n+ 1, A⟩+ wcn,A |n− 1, B⟩)

=−
∑
n=1

(vcn,B |n,A⟩+ vcn,A |n,B⟩+ wcn−1,B |n,A⟩ − wcn+1,A |n,B⟩)

+ wc1,A |0, B⟩

=E
∑
n=0

(cn,A |n,A⟩+ cn,B |n,B⟩).

(85)

The amplitudes cn,A and cn,B obey the relations

− vcn,B − wcn−1,B = Ecn,A, −vcn,A − wcn+1,A = Ecn,B for n ≥ 1, (86)
− wc1,A = Ec0,B. (87)
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Figure 8: Zero-energy state localised towards end of chain.

Let’s now derive the zero-energy state of this system. At zero-energy state, we have

−vcn,B − wcn−1,B = 0, −vcn,A − wcn+1,A = 0, c1,A = 0. (88)

These equations gives the following results

cn,A = 0, cn,B = c0,B

(
−w
v

)n
= c0,B(−1)ne−n/ξ, (89)

where ξ = 1/ ln(v/w) is named the localisation length. For cn,A = 0, we find that
the edge state has nodes at all the A-sites. The localisation length ξ is very short
when w → 0, corresponding to the electron completely localized on end site. As we
approach a uniform chain (w → v), it diverges as a power law: ξ ∼ (1− w/v)−1.

In summary, we have found a transition between the presence and absence of
an edge state in the alternating chain as a function of the ratio of hopping integrals
w/v. For w < v, the edge state exists and is adiabatically connected to the simple
isolated site at w = 0. The sublattice symmetry of the system together with the
existence of a band gap protects the mid-gap edge state. The loss of the edge
state coincides with the closure of the band gap at w = v.

4.1.4 Finite chains

The simulation of a 51-site chain with hopping w, v, w, v, . . . , w, v in python
refers to github.com/chenx820.

4.2 Topological protection of the edge state

More generally, a translationally invariant Hamiltonian with the sublattice chiral
cymmetry can be written as

Ĥsym = −
∑
m,n

(tm−n |m,A⟩ ⟨n,B|+ t∗m−n |n,B⟩ ⟨m,A|). (90)
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From the Bloch theorem, we can write the eigenstates

|ψk⟩ =
∑
n

(
cAe

ikn |n,A⟩+ cBe
ikn |n,B⟩

)
, (91)

with −π < k ≤ π. To solve the eigenfunction Ĥsym |ψk⟩ = E |ψk⟩, we have

Ĥsym |ψk⟩ =−
∑
m,n,p

(
tm−ncBe

ikp |m,A⟩ ⟨n,B|p,B⟩+ t∗m−ncAe
ikp |n,B⟩ ⟨m,A|p,A⟩

)
,

=−
∑
m,n

(
tm−ncBe

ikn |m,A⟩+ t∗m−ncAe
ikm |n,B⟩

)
,

=−
∑
m,n

(
tn−mcBe

ikm |n,A⟩+ t∗m−ncAe
ikm |n,B⟩

)
,

= E
∑
n

(
cAe

ikn |n,A⟩+ cBe
ikn |n,B⟩

)
.

(92)
Comparing the coefficients, then we get

−
∑
m

tn−me
−ik(n−m)cB = EcA, −

∑
m

t∗m−ne
ik(m−n)cA = EcB, (93)

which gives

−
(

0 t(k)
t(k)∗ 0

)(
cA
cB

)
= Ek

(
cA
cB

)
, t(k) =

∑
m

tme
−ikm. (94)

The eigenstates have energies Ek = ±|t(k)|. The chain Ĥsym completely describe by
t(k) for −π < k ≤ π. The system is completely described geometrically by a loop
in the complex t-plane. For SSH chain, t(k) = v + we−ika (Fig. 9).

All of the chiral chains can be divided into two classes. One class supports edge
states and the other does not. This is decided by whether the loop t(k) winds around
the origin (degeneracy point) or not. This winding is a topological criterion: The
zero-energy edge state is topologically protected — changes to the Hamiltonian does
not destroy the edge state, as long as the changes preserve the chiral sublattice symmetry
and the system is adiabatically connected to the fully dimerized limit with such a state.

Now we look at the two-level system, which we have talked about in Chapter 1.
The Bloch Hamiltonian can be written as

h(k) =

(
0 t(k)

t(k)∗ 0

)
= d(k) · σ. (95)

The Berry phase for taking the eigenstates around the Brillouin zone will tell us
about the winding of the loop C:

γ = i

∫ π

−π

⟨k,±| ∂k |k,±⟩ dk. (96)

In this context of a one-dimensional Brillouin zone, the Berry phase is called the Zak
phase in the literature.
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SSH (w > v)

SSH (w < v)

Re(t)

Im(t)

degeneracy

Figure 9: In SSH chain, the hopping t(k) = w+ve−ika forms a closed loop as k traverses
the Brillouin zone. Red: w < v has edge state, loop can be shrunk to a point (isolated
end atom) without crossing the origin (degeneracy point). Blue: w > v has no edge
state, loop encloses origin and cannot be shrunk to a point without passing through
degeneracy point.

5 Adiabatic transport

In this charpter, we will discuss how a charge can be transported by cycling the
parameters of a system adiabatically.

5.1 Adiabatic cycle on a dimerized chain

5.1.1 Rice-Mele model

The Rice-Mele model is an extension of the Su-Schrieffer-Heeger lattice in the
presence of a staggered potential such that there is an imbalance in the on-site en-
ergies at A and B sites. The Rice-Mele Hamiltonian is

ĤRM = Ĥalt + u
∑
n

(|n,A⟩ ⟨n,A| − |n,B⟩ ⟨n,B|) , (97)

Ĥalt = −
∑
n

[v(|n,A⟩ ⟨n,B|+ h.c.) + w(|n,B⟩ ⟨n+ 1, A|+ h.c.)]. (98)

A positive u raises the energy of the A sites and lowers the energy of the B sites. The
eigenstate |ψn⟩ = cn,A |n,A⟩+ cn,B |n,B⟩. The eigenfunction ĤRM |ψ⟩ = E |ψ⟩ gives(

u −v − we−ika

−v − weika −u

)(
cA
cB

)
= E

(
cA
cB

)
. (99)

We can solve the eigenfunction for ĤRM:

Ek = ±
√
v2 + w2 + u2 + 2vw cos(ka). (100)
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The two-level Hamiltonian at each wavevector k can be written as a spin model
Ĥ = d · σ̂ with

dx = −v − w cos(ka), dy = −w sin(ka), dz = u, (101)
σ̂x = |A, k⟩ ⟨B, k|+ |B, k⟩ ⟨A, k| , σ̂y = −i(|A, k⟩ ⟨B, k| − |B, k⟩ ⟨A, k|), (102)
σ̂z = |A, k⟩ ⟨B, k| − |B, k⟩ ⟨A, k| . (103)

5.1.2 Charge pump cycle

Based on the Rice-Mele model, let us consider the adiabatic protocol with period
of T :

v(t) = v0, w(t) = v0[1 + cos(2πt/T )], u(t) = −v0 sin(2πt/T ), (104)
d(k, t) = (−v(t)− w(t) cos(ka),−w(t) sin(ka), u(t)). (105)

This protocol has four stages between the times t = 0, 1
4
T, 1

2
T, 3

4
T and T .

1. At the start, the chain has no edge states (w > v) and all the on-site energies
the same. With the Fermi level in the band gap, all the states in the lower band
are filled. The electron density is the same on every site (one per site).

2. At time t = T/4, the hopping w goes below v so that edge states appear at both
ends. For a negative u, the right edge state (A sites) is below the Fermi level
and is occupied. The left edge state (B sites) has an energy above the Fermi
level and is unoccupied.

3. After t = T/4, we increase u and continue to decrease w so that w = 0 at t =
T/2. At this point, we have a set of isolated dimers with the edge state localized
completely on the end sites, still occupied on the right and unoccupied on the
left.

4. After t = T/2, the staggered field u becomes positive. This raises the right edge
state above the Fermi level and the left edge state goes below the Fermi level.
Being an adiabatic process, we cannot abruptly empty the right edge state and
fill up the left edge state because they are widely separated in space. So, the
right edge state remains occupied and the left edge state remains unoccupied.

5. At t = 3T/2, the value of w rises above v. This means that the size of the edge
states diverges and the states merge into the bulk spectrum. Since u = +v0
at this point, the right edge state becomes the lowest state in the conduction
band and the left edge state becomes the highest state in the valence band.

6. By the end of the cycle at t = T , we have switched off the staggered potential
and we have returned to an SSH model. Although the edge states have gone
and the spectrum has returned to its original form at t = 0, we see that the
occupation of the eigenstates has changed. There is an electron at the bottom
of the conduction band and a hole at top of the valence band. In other words,
the protocol has done work on the system and excited (“pumped”) an electron
across the band gap!
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Figure 10: Left: Adiabatic cycle of the system parameters of a Rice-Mele chain. Right:
Instantaneous energy spectrum of the chain with 50 sites.

5.2 Quasi-adiabatic regime

If we start the system in an eigenstate |ψ(t = 0)⟩ = |ν,R(t = 0)⟩ and change the
parameters R infinitesimally slowly, the system will stay in this eigenstate and in
terms of the form

|ψ(t)⟩ ≃ eiγν,dyn(t)eiγν,geom(t) |ν,R(t)⟩ , (106)

where

ℏγ̇ν,dyn(t) = −Eν(R(t)), (107)

γ̇ν,geom(t) = i ⟨ν,R| ∂t |ν,R⟩ = iṘ · ⟨ν,R|∇R |ν,R⟩ . (108)

If we change gauge to absorb geometric phase, i.e.,

|ν̃(t)⟩ = eiγν,geom(t) |ν,R(t)⟩ . (109)

This is called the parallel transport gauge. And we note that

Ĥ(t) |ν,R(t)⟩ = Eν(t) |ν,R(t)⟩ , (110)

|∂tν̃⟩ = eiγν,geom [i(∂tγν,geom) |ν⟩+ |∂tν⟩] = eiγν,geom [−⟨ν|∂tν⟩ |ν⟩+ |∂tν⟩]. (111)

Thus, we see that ⟨ν̃| ∂t |ν̃⟩ = 0 by design. The state |ψ⟩ evolves according to the
time-dependent Schrödinger equation

iℏ∂t |ψ⟩ = Ĥ(t) |ψ⟩ with Ĥ(T ) = Ĥ(0), |ψ(0)⟩ = |ν̃(0)⟩ . (112)

Let us write the state as

|ψ(t)⟩ ≃eiγν,dyn(t) |ν̃(t)⟩+
∑
µ̸=ν

cµ(t)e
iγµ,dyn(t) |µ̃(t)⟩

=eiγν,dyn(t)

[
|ν̃(t)⟩+

∑
µ̸=ν

cµ(t)e
i∆γµν(t) |µ̃(t)⟩

]
.

(113)
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where ∆γµν(t) = γµ,dyn(t)−γν,dyn(t). When ℏ/(T∆E) ≪ 1, we expect the coefficients
cµ to be small and of the order of ℏ/T∆E. So we have

|ψ(t)⟩ ≃ e−
i
ℏ
∫ t
0 Eν(t′)dt′

[
|ν̃(t)⟩+ iℏ

∑
µ ̸=ν

|µ̃(t)⟩ ⟨µ̃| ∂t |ν̃⟩
Eµ − Eν

]
. (114)

This is sometimes called the quasi-adiabatic regime to distinguish it from the limit
of infinitely slow variations.

5.3 Thouless adiabatic current

Now, let us work out the thouless adiabatic current. The current operator

Ĵ(t) =
∑
k∈BZ

1

ℏL
∂Ĥk

∂k
with Ĥk =

∑
µ

Eµ,k |µ, k⟩ ⟨µ, k| . (115)

So we have
J(t) =

1

ℏL
∑
k∈BZ

⟨ψk(t)| (∂kĤk) |ψk(t)⟩ , (116)

where −π/a < k ≤ π/a. Then we calculate

∂kĤk =
∑
µ

[(∂kEµ,k) |µ, k⟩ ⟨µ, k|+ Eµ,k(|∂kµ⟩ ⟨µ, k|+ |µ, k⟩ ⟨∂kµ|)] , (117)

where |∂kµ⟩ is shorthand for ∂k |µ, k⟩. From last section we know, in the adiabatic
limit

|ψk(t)⟩ ≃ e−
i
ℏ
∫ t
0 Eν(t′)dt′

[
|ν̃(t), k⟩+ iℏ

∑
µ ̸=ν

|µ̃(t), k⟩ ⟨µ̃, k| ∂t |ν̃, k⟩
Eµ − Eν

]
. (118)

So the current in the zeroth order and the first order

J (0) =
1

ℏL
∑
k∈BZ

⟨ν̃, k| (∂kĤk) |ν̃, k⟩ =
1

ℏL
∑
k∈BZ

∂kEν,k = 0, (119)

J
(1)
ν,k =

1

L

∑
µ̸=ν

[
i ⟨ν̃, k| (∂kĤk) |µ̃(t), k⟩

⟨µ̃, k| ∂t |ν̃, k⟩
Eµ,k − Eν,k

+ c.c.
]

(120)

From Eq.(117)

⟨ν̃| (∂kĤk) |µ̃⟩ = Eµ,k ⟨ν̃|∂kµ̃⟩+ Eν,k ⟨∂kν̃|µ̃⟩ = (Eν,k − Eµ,k) ⟨∂kν̃|µ̃⟩ . (121)

Substituting into the equation for the current correction gives

J
(1)
ν,k =

1

L

∑
µ ̸=ν

(−i ⟨∂kν̃|µ̃⟩ ⟨µ̃|∂tν̃⟩+ i ⟨∂tν̃|µ̃⟩ ⟨µ̃|∂kν̃⟩)

=− i

L
(⟨∂kν̃|∂tν̃⟩ − ⟨∂tν̃|∂kν̃⟩)

=− i

L
(⟨∂kν|∂tν⟩ − ⟨∂tν|∂kν⟩) .

(122)
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Figure 11: Line integral around the perimeter of an unwrapped torus.

The expression for current is gauge-invariant, valid for any gauge choice. The cur-
rent can be expressed in the form of integral:

J(t) =
1

ℏL
∑
k∈BZ

⟨ψk(t)| (∂kĤ) |ψk(t)⟩ =
1

2πi

∮
BZ

(⟨∂kν|∂tν⟩ − ⟨∂tν|∂kν⟩) dk. (123)

Link to the Berry phase, the Berry curvature and Berry connection is

B(k, t) = i(⟨∂kν|∂tν⟩ − ⟨∂tν|∂kν⟩), Ak,t = i ⟨ν| ∂k,t |ν⟩ . (124)

5.4 First Chern number

If the system completes an adiabatic cycle of the parameters in time T , then the
total number of particles Q transferred across a link is the integral of the current at
the link.

Q =

∫ T

0

J(t)dt =
1

2πi

∫ T

0

dt

∮
BZ

dk(⟨∂kν|∂tν⟩ − ⟨∂tν|∂kν⟩). (125)

The quantity Q is called the first Chern number. We will now show that the Chern
number for the torus is an integer:

2πQ =− i

∫ T

0

dt

∮
BZ

dk(⟨∂kν|∂tν⟩ − ⟨∂tν|∂kν⟩)

=−
∫ π/a

−π/a

dk[Ak(k, 0)− Ak(k, T )]−
∫ T

0

dt[At(π/a, t)− At(−π/a, t)]

=−
∫ π/a

−π/a

dk∂kχk +

∫ T

0

dt∂tχt

=− χk(π/a) + χk(−π/a) + χt(T )− χt(0),

(126)

where

Ak = i ⟨ν, k, t| ∂k |ν, k, t⟩ , At = i ⟨ν, k, t| ∂t |ν, k, t⟩ , (127)

|ν, k, T ⟩ = eiχk(k) |ν, k, 0⟩ , |ν, π/a, t⟩ = eiχt(t) |ν,−π/a, t⟩ . (128)

The number transported is quantised

Q =
1

2π
[−χk(π/a) + χk(−π/a) + χt(T )− χt(0)] = integer. (129)

In summary, we have shown that the number of particles transported in one
adiabatic cycle of the parameters must be an integer.

25



6 Electrons in a vector potential

In this chapter, we explore the interaction of quantum particles with electromag-
netic fields, focusing on three key concepts crucial for advanced physics students.
First, we discuss how charged particles are influenced by vector potentials, introduc-
ing the foundational ideas linking quantum mechanics to electromagnetism. Next,
we delve into local gauge invariance, illustrating its role in maintaining the consis-
tency of physical laws across different reference frames. Finally, we examine the
Aharonov-Bohm effect, demonstrating the observable consequences of electromag-
netic potentials on quantum systems.

6.1 Gauge choice in electromagnetic

We consider a non-relativistic particle with charge q with a vector potential A
and the scalar potential ϕ

Ĥ =
1

2m
(−iℏ∇− qA)2 + qϕ, (130)

where B = ∇×A is the magnetic field and E = −∇ϕ− ∂A
∂t

is the electric field.
There is a degree of freedom in the choice of the vector and scalar potentials,

which is called a choice of gauge. The key point is that physics should be the same no
matter what gauge we use and this is the principle of gauge invariance. In classical
mechanics, we need to ensure that the force on a charged particle (which depends
only B and E) remains the same when we change the gauge. The magnetic field
does not change if we add a gradient of a scalar function φ to the vector potential.
B and E is invarent under the transformation

A → A′ = A+∇φ, ϕ→ ϕ′ = ϕ− ∂φ

∂t
. (131)

And the Hamiltonian also transforms

Ĥ → Ĥ ′ =
1

2m
(−iℏ∇− qA− q∇φ)2 + qϕ− q

∂φ

∂t
. (132)

With the new Hamiltonian, the wavefunctions also need to transform under

ψ → ψ′ = eiqφ/ℏψ. (133)

Now we examine the Shrödinger equation iℏ∂ψ′/∂t = Ĥ ′ψ′. To begin with,
we calculate the right handside of the equation. First, we calculate the relation

(−iℏ∇− qA− q∇φ)ψ′ =(−iℏ∇− qA− q∇φ)eiqφ/ℏψ

=q(∇φ)eiqφ/ℏψ − iℏ(∇ψ)eiqφ/ℏ − qAeiqφ/ℏψ − q(∇φ)eiqφ/ℏψ

=− iℏ(∇ψ)eiqφ/ℏ − qAeiqφ/ℏψ

=eiqφ/ℏ(−iℏ∇− qA)ψ.
(134)
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Then we apply the operator (−iℏ∇− qA− q∇φ) on ψ′ twice:

(−iℏ∇− qA− q∇φ)2ψ′ = eiqφ/ℏ(−iℏ∇− qA)2ψ. (135)

So the right handside of the Schrödinger equation is

RHS = Ĥ ′ψ′ = eiqφ/ℏ
[

1

2m
(−iℏ∇− qA)2ψ + qϕ− q

∂φ

∂t

]
ψ = eiqφ/ℏHψ. (136)

The left handside of the equation is

LHS = iℏ
∂ψ′

∂t
= eiqφ/ℏiℏ

∂ψ

∂t
. (137)

with the Schrödinger equation of the original Hamiltonian iℏ∂ψ/∂t = Ĥψ, the
Schrödinger equation under gauce transformation are verified.

6.2 Current in a vector potential

The current density in the absence of a vector potential is

J =
1

2m
[ψ∗(−iℏ∇)ψ + ψ(iℏ∇)ψ∗]. (138)

To obtain the current in the presence of a vector potential, we make the replacement
−iℏ∇ → −iℏ∇− qA so that

J =
1

2m
[ψ∗(−iℏ∇− qA)ψ + ψ(iℏ∇− qA)ψ∗]

=− iℏ
2m

(ψ∗∇ψ − ψ∇ψ∗)− qA

2m
|ψ|2.

(139)

The current is gauge invarience and we can examine this:

J ′ =− iℏ
2m

[(ψ′)∗∇ψ′ − ψ′∇(ψ′)∗]− qA′

2m
|ψ′|2

=
1

2m
[ψ∗(−iℏ∇+ q∇φ)ψ + ψ(iℏ∇+ q∇φ)ψ∗]− q

2m
(A+∇φ)|ψ|2

=− iℏ
2m

(ψ∗∇ψ − ψ∇ψ∗)− qA

2m
|ψ|2 = J .

(140)

6.3 Aharonov-Bohm effect

6.3.1 Adiabatic derivation

Consider a long strait solenoid parallel to the z-axis with magnetic flux Φ. Clas-
sically, there is no effect on the classical dynamics due to the solenoid (the magnetic
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Figure 12: A particle is confined to a ox at position R(t) which is moved adiabatically
along path C around an infinite solenoid carrying flux Φ. The box does not move through
any region with non-zero magnetic field.

field outside the solenoid is zero). With the relation∮
C

A · dr =

∫
S

B · dS = Φ, (141)

the vector potential outside the solenoid is Aϕ = Φ/2πr, where r is the distance of a
point outside the solenoid and the center of solenoid.

Consider a charged partical confined by a tight potential well V (r−R) centred
at R far away from the solenoid. The Hamiltonian of the particle is

Ĥ =
1

2m
(−iℏ∇r − qA(r))2 + V (r −R). (142)

Suppose that we prepare the charged particle in its ground state in the potential
well at time t = 0, and then adiabatically move the potential well along a path C
encircling the solenoid. The Schrödinger equation is

iℏ
∂ψ

∂t
=

[
1

2m
(−iℏ∇r − qA(r))2 + V (r −R(t))

]
ψ. (143)

Suppose that the eigenstate of the particle in the potential well at R without the
vector potential has energy E and wave function u(r − R) centred at R, that is,[
− ℏ2

2m
∇2

r + V (r)
]
u(r) = Eu(r). It can be seen that a choice for the instantaneous

eigenstate ψR(r) in the presence of the vector potential A ̸= 0 with the well at
position R is

ψR(r) = eiχR(r)u(r −R), χR(r) =
q

ℏ

∫ r

R

A(r′) · dr′. (144)
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Now we examine the solutions given in Eq.(144). Let’s begin with the rela-
tion

(−iℏ∇r − qA)eiχ(r)u(r −R) = eiχ(r)(−iℏ∇r + ℏ∇χ− qA)u(r −R). (145)

If we set ℏ∇χ − qA = 0 and B = ∇ × A = ℏ
q
∇ × (∇χ) = 0, which gives

χR(r) =
q
ℏ

∫ r

R
A(r′) · dr′, then the relation above becomes

(−iℏ∇r − qA)eiχ(r)u(r −R) = eiχ(r)(−iℏ∇r)u(r −R), (146)

(−iℏ∇r − qA)2eiχ(r)u(r −R) = eiχ(r)(−iℏ∇r)
2u(r −R). (147)

So we have [
− ℏ2

2m
∇2

r + V (r −R)

]
u(r −R) = Eu(r −R). (148)

Take the box at R move around the solenoid slowly, then the geometry phase /
Berry phase is

γgeom =

∮
C

a(R) · dR, (149)

where the Berry connection is

a(R) = i ⟨ψR|∇R |ψR⟩ = −∇RχR(r) + i ⟨uR|∇R |uR⟩ =
q

ℏ
A(R). (150)

So the Berry phase is

γgeom =
q

ℏ

∮
C

A(R) · dR =
q

ℏ
Φ. (151)

6.3.2 Aharonov-Bohm interferometry

We can measure the Aharonov-Bohm effect by Young slits. Consider two beams
start from r0 and focus together at r1, the paths are donoted as CR and CL. Then
the phase difference will cause interference between the two beams. Their phase
difference is

∆(phase) =
q

ℏ

∫
CL

A(R) · dR− q

ℏ

∫
CR

A(R) · dR =
qΦ

ℏ
. (152)

In experiments, the “flux lines” due to an Aharonov-Bohm phase difference (2n+1)π
where n is a integer. So the flux

Φ =
ℏ
e
(2n+ 1)π =

h

e

(
n+

1

2

)
, (153)

where h = 2πℏ. A phase of π was observed and thus shows that the flux through the
solenoid is quantized in units of h/e.
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7 Electrons in a magnetic field

7.1 Electrons in a uniform magnetic field

Consider electrons in xy-plane with a uniform magnetic field B parallels to the
z-direction, i.e., B = (0, 0, B). For circular motion, Newton’s law

mv2

r
= eBv, (154)

gives the cyclotron frequency

ωc =
v

r
=
eB

m
. (155)

The Hamiltonian of the electron

Ĥ =
1

2m
(−iℏ∇+ eA)2 + V (z)

=
1

2m
(−ℏ2∇2 − 2ieℏA ·∇+ e2A2) + V (z),

(156)

with A = ∇ × B. To proceed further, we have to choose a specific gauge for the
vector potential. For example, there are Landau gauge A = (−By, 0, 0) and sym-
metric gauge A = B

2
(−y, x, 0). Now we choose the Landau gauge. The Hamiltonian

becomes

Ĥ =
1

2m

[
−ℏ2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
− 2ieℏ(−By) ∂

∂x
+ e2B2y2

]
+ V (z)

=
1

2m

[
−ℏ2

∂2

∂y2
+

(
−iℏ ∂

∂x
− eBy

)2
]
− ℏ2

2m

∂2

∂z2
+ V (z)

=Ĥxy + Ĥz,

(157)

where

Ĥxy =
1

2m

[
−ℏ2

∂2

∂y2
+

(
−iℏ ∂

∂x
− eBy

)2
]
, Ĥz = − ℏ2

2m

∂2

∂z2
+ V (z). (158)

The eigenstates of the Hamiltonian Ĥ can be written as Ψ(x, y, z) = ψ(x, y)u(z)
where

Ĥxyψ(x, y) = Exyψ(x, y), Ĥzu(z) = Ezu(z), E = Exy + Ez. (159)

Now we focus on the xy-plane. In Landau gauge, this Hamiltonian has translational
symmetry in the x-direction but not in the y-direction. This means that eigenstates
should be plane waves in the x-direction: ψ(x, y) = eikxxvkx(y). Then

Ĥxye
ikxxvkx(y) =

ℏ2

2m

[
−∂2y +

(
kx −

y

l2B

)2
]
eikxxvkx(y) = Exye

ikxxvkx(y), (160)
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or

Ĥkxvkx(y) =
ℏ2

2m

[
−∂2y +

(
kx −

y

l2B

)2
]
vkx(y) = Exyvkx(y), (161)

where lB =
√

ℏ
eB

is called the magnetic length and is the natural quantum length
scale for this system.

Recall the simple harmonic oscillator (SHO) with natural frequency ω0 centered
at ykx = kxl

2
B with energies En = (n+ 1

2
)ℏω0. The Hamiltonian of SHO is

ĤSHO = − ℏ2

2m

d2

dy2
+

1

2
mω2

0(y − yk)
2 =

ℏ2

2m

[
− d2

dy2
+
m2ω2

0

ℏ2
(y − yk)

2

]
. (162)

Compare the terms with Ĥkx:

Ĥkx =
ℏ2

2m

[
− d2

dy2
+
e2B2

ℏ2
(
y − l2Bkx

)2]
, (163)

the natural frequency for our problem is ω0 = eB/m = ωc. So the eigenvalues of Ĥxy

are

Exy(kx) =

(
n+

1

2

)
ℏωc, (164)

which is independent of kx.

We can denote the quantum states in |kx, n⟩, which is labelled by kx and the
harmonic scillator number n = 0, 1, 2, . . . . How many degenerate states at each n?

Applying periodic boundary condition on x-direction (length Lx) which requires
eikxLx = 1. The wavevector k are quantised in steps of δkx = 2π/Lx. So the |kx.n⟩
states separated in y by

δykx = l2Bδkx =
2πl2B
Lx

. (165)

For region with area A = LxLy, the number of states is

g =
Ly

δykx
=
LxLy

2πl2B
=
e

h
BA =

Φ

Φ0

, (166)

and this is called macroscopic degeneracy, where Φ is the total flux through area
A, Φ0 = h/e is known as the flux quantum.

7.2 Classical Hall effect

Consider an electron moving parallel to the xy-plane in a magnetic field B in
the z-direction and an electric field E in the y-direction. The equation of motion for
the electron is

mẍ = −eBẏ, mÿ = eBẋ− eEy. (167)

It is convenient to think of this as motion in the complex plane with z = x + iy as
the complex number. Then the equation of motion can be written as

mz̈ − ieBż = −ieEy. (168)
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Figure 13: Classical free electrons in crossed magnetic and electric fields.

This is an inhomogeneous first-order different equation in ż and the solution is

ż = Aeiωct +
Ey
B
, z = z0e

iωct +
Eyt
B

+ z1, (169)

where ωc = eB/m is the cyclotron frequency with electric field E = 0, z0 = A/iωc

and z1 is a constant dependent with the initial conditions. From the expression, we
see the electric field along the y-direction causes the cyclotron orbits to drift in the
x-direction with speed vx = Ey/B.

Consider now a thin metallic plate (in the xy-plane) with an electron areal den-
sity n. Applying the same field above, then we find the current density

Jx = −nevx = −(ne/B)Ey. (170)

For a sample of width Ly, the current is Ix = JxLy = −neEyLy/B and the voltage
Vy = −EyLy. Therefore, the Hall resistance is

RH =
Vy
Ix

=
B

ne
. (171)

More general, we can write the current density J of the system as a linear response
to applied electric fields E in the x- and y-directions along the plate(

Jx
Jy

)
=

(
σxx σxy
−σxy σxx

)(
Ex
Ey

)
, (172)

where the matrix σ is the conductivity tensor. Note that this is an anti-asymmetric
tensor. Conversely, we can define a resistivity tensor(

Ex
Ey

)
=

(
ρxx ρxy
−ρxy ρxx

)(
Jx
Jy

)
, (173)

with
ρxx =

σxx
σ2
xx + σ2

xy

, ρxy = − σxy
σ2
xx + σ2

xy

. (174)

In this way, the Hall effect can be written as

σxy = −ne
B
, ρxy =

B

en
, σxx = 0, ρxx = 0. (175)

Therefore, the Hall effect can be used to measure the charge carrier in metals.
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7.3 Interger quantum Hall effect

7.3.1 Landau levels in an electric field

Let’s consider the 2D electron gas in a strong perpendicular magnetic field B
and an electric field E in the y-direction. In the Landau gauge A = (−By, 0, 0), the
Hamiltonian is given by

Ĥ =
1

2m

[
−ℏ2

∂2

∂y2
+

(
−iℏ ∂

∂x
− eBy

)2
]
+ eEy. (176)

This can be solved with a separable solution: ψ(x, y) = eikxxvkx(y), for a system of
length Lx in the x-direction with periodic boundary conditions. The motion in the
y-directions obeys

Ĥkxvkx(y) =
ℏ2

2m

[
− d2

dy2
+

(
kx −

y

l2B

)2

+
2meEy
ℏ2

]
vkx(y) = E(kx)vkx(y). (177)

It is a simple harmonic oscillator:

Ĥkx =
ℏωc

2

[
−l2B

d2

dy2
+

1

l2B
(y − ykx + yE)

2

]
+ eE

(
ykx −

yE
2

)
, yE =

mE
eB2

, (178)

where ykx = kxl
2
B is the center of the harmonic potential in the absence of an electric

field. Now the centre has shifted to ykx − yE . The eigenenergies are

En(kx) =

(
n+

1

2

)
ℏωc + eE

(
ykx −

yE
2

)
=

(
n+

1

2

)
ℏωc + eE (ykx − yE) +

1

2
m

(
E
B

)2

.

(179)

The group velocity is

vg(kx) =
1

ℏ
∂En(kx)

∂kx
=
eE
ℏ
∂ykx
∂kx

=
E
B
. (180)

Recall the degeneracy of the Landau level. The number of electron states in a strip
of width Ly is g = Φ/Φ0 = LxLyeB/h (per Landau level). For M filled Landau levels,
the density of electrons n =MeB/h. The current density is

Jx = −nevg = −Me2

h
Ey. (181)

So the conductivities are

σxy = −Me2

h
, σxx = 0. (182)

One can easily check the cyclotron drift current is independent of Landau level index.
So, if there are M occupied Landau levels, then the contributions add up and σxy =
−Me2/h.
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Figure 14: The energy of an edge state arising from that Landau level can still cross the
Fermi level.

Figure 15: Take the two-dimensional electron gas and wrap the sheet in the y-direction
so that it is now a cylinder of circumference Ly with the axis of symmetry in the x-
direction.

7.3.2 Edge states

If the Fermi level lies between two Landau levels, then the system should be
an insulator. So where does the current come from in the quantum Hall regime? It
turns out that there is always an edge state at the Fermi level. In other words, this
two-dimensional insulator has a metallic perimeter!

If we have filled Landau levels in the bulk, the Fermi level EF is above the bulk
Landau level energy (n+1/2)ℏωc. However, the energy of an edge state arising from
that Landau level can still cross the Fermi level, as depicted in Fig. 14. This means
that there is a one-dimensional conduction channel at the edge of this insulating
system! This is the first example topological insulator.

7.3.3 Laughlin’s gauge argument: adiabatic transport

Laughlin provided an important insight8 into the physics of the quantum Hall
effect. This makes use of the Aharonov-Bohm effect, adiabatic continuity and
Thouless pumping.

Laughlin proposed the following thought experiment. Take the two-dimensional
electron gas and wrap the sheet in the y-direction so that it is now a cylinder of
circumference Ly with the axis of symmetry in the x-direction (see Fig. 15).

According to Faraday’s law Φ̇ = −
∮
Ly

Eydy, electromotive force (emf) can be

produced by the change in magnetic flux, i.e., Ey = −Φ̇/Ly. Suppose the rate of flux
introduction is such that the flux Φ changes by a flux quantum Φ0 = h/e in time T ,
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then
Vy = −EyLy =

Φ0

T
=

h

eT
. (183)

In the adiabatic process, electrons cannot be excited to higher Landau levels, and
only the edge states near Fermi level can be affected. Suppose there are M electrons
transported from one edge to another edge, then the current density

Jx = −Me2

h
Ey = − eM

TLy

. (184)

The conductivity is

σxy =
Jx
Ey

= −Me2

h
. (185)

This general argument is also applicable to disordered systems.

7.4 Kubo formula

7.4.1 Linear response theory

Now we derive the response of system Ĥ0 perturbation Ĥ1 switched on at t = 0.
Then the Hamiltonian of the system is Ĥ = Ĥ0 + Ĥ1 and the Schrödinger equation:

Ĥ |ψ(t)⟩ = iℏ∂t |ψ(t)⟩ . (186)

We can take the eigenstates |µ⟩ of Ĥ0 as basis: Ĥ0 |µ⟩ = Eµ |µ⟩. The evolution under
Ĥ0

|µ(t)⟩ = e−iEµt/ℏ |µ(0)⟩ , (187)

|ψ0(t)⟩ = Û0(t) |ψ(0)⟩ = e−iĤ0t/ℏ |ψ(0)⟩ . (188)

The evolution under Ĥ is |ψ(t)⟩ = Û(t, 0) |ψ(0)⟩. The evolution operator Û(t, 0) can
be devided into small time steps δt:

Û(t, 0) = exp

[
− i

ℏ

∫ t

0

Ĥ(t′)dt′
]

≃ exp

[
− i

ℏ
δt(Ĥ0 + Ĥ1)

]
t

. . . exp

[
− i

ℏ
δt(Ĥ0 + Ĥ1)

]
0

=

[
e−iδtĤ0/ℏ

(
1− i

ℏ
δtĤ1

)]
t

. . .

[
e−iδtĤ0/ℏ

(
1− i

ℏ
δtĤ1

)]
0

= Û0(t) +

t/δt∑
i=0

Û0(t− ti)

(
− i

ℏ
δtĤ1(ti)

)
Û0(ti) + . . .

= Û0(t)−
i

ℏ

∫ t

0

dt′Û0(t− t′)Ĥ1(t
′)Û0(t

′) + . . . .

(189)

If we measure the operator Ô at time t, the expectation value is

O(t) = ⟨ψ(t)| Ô |ψ(t)⟩ = ⟨ψ(0)| Û †(t, 0)ÔÛ(t, 0) |ψ(0)⟩ = ⟨ψ(0)| Ô(t) |ψ(0)⟩ , (190)
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where

Ô(t) = Û †(t, 0)ÔÛ(t, 0) = Û(0, t)ÔÛ(t, 0)

≃ Û0(−t)ÔÛ0(t)−
i

ℏ
Û0(−t)Ô

∫ t

0

dt′Û0(t− t′)Ĥ1(t
′)Û0(t

′)

+
i

ℏ
Û0(−t)Ô

∫ t

0

dt′Ĥ1(t
′)Û0(t− t′)ÔÛ0(t).

(191)

The first term corresponds to the unperturbed expectation value; the second and
third terms correspond to the response to first order in perturbation Ĥ1.

7.4.2 Conductivity as linear response

We introduce a small change to the vector potential: A → A + a cos(ωt), then
the electric field Ey = −∂tay(t). Now we can write the Hamiltonians of the system:

Ĥ0 =
1

2m
(−iℏ∇+ eA)2 + V (r), (192)

Ĥ1 = eay cos(ωt)v̂y +O(a2), (193)

where v̂ = (−iℏ∇+ eA)/m. Then measure the current Ô = −ev̂x. According to the
linear response theory, we use Hall conductivity as the linear response function:

σxy = − ie2ℏ
LxLy

∑
Eν<EF<Eµ

⟨ν| v̂x |µ⟩ ⟨µ| v̂y |ν⟩ − ⟨ν| v̂y |µ⟩ ⟨µ| v̂x |ν⟩
(Eµ − Eν)2

, (194)

where |µ⟩ and |ν⟩ are eigenstates in the absence of Ey. This is also called the Kubo
formula. The Hall conductivity can also be expressed as

σxy =
e2

h

∑
En<EF

Cn, Cn =

∫
BZ

d2k

2πi

[〈
∂kxn

∣∣∂kyn〉− 〈∂kyn∣∣∂kxn〉] = integer (195)

The Chern number for each band n is called the TKNN (Thouless-Kohmoto-Nightingale-
der Nijs) invariant for the band. We see that the quantisation of the Hall conductivity
for a system with filled Landau bands is intimately connected with a topological in-
variant of the electron bands.
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8 Carbon and carbon allotropes

8.1 The carbon atom

The ground state configuration of carbon atom electrons is 1s22s22p2. The core
electrons, which are located in 1s2, stay close to the carbon atom. They do not
participate directly in bond formation. The valence electrons, located in 2s22p2,
participate in binding and conduction.

For the 2s and 2p states, the angular solutions for the wave functions are

Y0,0(θ, ϕ) =
1√
4π
, Y1,±1(θ, ϕ) = ∓

√
3

8π
e±iϕ sin θ, Y1,0(θ, ϕ) =

√
3

4π
cos θ, (196)

which are normalized to unity over the unit sphere. Alternative forms as angular
solutions are obtained by a unitary transformation to real functions, which, in Dirac
notation, are

|s⟩ = 1√
4π
, (197)

|px⟩ =
√

3

4π
cosϕ sin θ, |py⟩ =

√
3

4π
sinϕ sin θ, |pz⟩ =

√
3

4π
cos θ. (198)

8.2 Hybridization and the structure of carbon allotropes

The superposition of the |2s⟩ with n |2pα⟩ (α = x, y, z) states is known as spn

hybridization.

1. The hybridization sp1 is found in one-dimensional atomic chains known as
carbynes. For sp1 hybridization, the unitary transformation from the atomic
basis (|s⟩ , |px⟩) to the basis (|φ1⟩ , |φ2⟩) is

|φ1⟩ =
1√
2
(|s⟩+ |px⟩), |φ2⟩ =

1√
2
(|s⟩ − |px⟩). (199)

2. Hybridization sp2 is found in 2D structures such as graphite, graphene, fullerenes,
and nanotubes. The corresponding hybridization is given by the transforma-
tion from the atomic (|s⟩ , |px⟩ , |py⟩) basis to the basis (|φ1⟩ , |φ2⟩ , |φ3⟩), where

|φ1⟩ =
1√
3

(
|s⟩+

√
3

2
|px⟩+

1√
2
|py⟩

)
, (200)

|φ2⟩ =
1√
3

(
|s⟩ −

√
3

2
|px⟩+

1√
2
|py⟩

)
, (201)

|φ3⟩ =
1√
3

(
|s⟩ −

√
2 |py⟩

)
. (202)
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Figure 16: (a) The honeycomb lattice of graphene showing the two different types of
atoms, indicated by filled and unfilled circles. As these atoms have different environ-
ments, the honeycomb lattice is not a Bravais lattice. The lattice spacing a and the
primitive unit vectors a1 and a2 are indicated. (b) The graphene lattice with the unit
cell (shown shaded) and the primitive unit vectors in (a), which define the edges of the
unit cell. The unit cell contains one of each type of atom in the lattice.

3. Hybridization sp3 is found in the diamond structure. The corresponding hy-
bridization is given by the transformation from the atomic (|s⟩ , |px⟩ , |py⟩ , |pz⟩)
basis to the basis (|φ1⟩ , |φ2⟩ , |φ3⟩ , |φ4⟩), where

|φ1⟩ =
1

2
(|s⟩+ |px⟩+ |py⟩+ |pz⟩) , (203)

|φ2⟩ =
1

2
(|s⟩ − |px⟩ − |py⟩+ |pz⟩) , (204)

|φ3⟩ =
1

2
(|s⟩ − |px⟩+ |py⟩ − |pz⟩) , (205)

|φ4⟩ =
1

2
(|s⟩+ |px⟩ − |py⟩ − |pz⟩) , (206)

(207)

8.3 Grystallography of Graphene

The honeycomb lattice of graphene is not a Bravais lattice because not all atoms
have the same environment. There are two distinct atoms A andB, and the primitive
lattice vectors of the graphene lattice are

a1 =
a
√
3

2
(i−

√
3j), a2 =

a
√
3

2
(i+

√
3j). (208)

The primitive vectors b1 and b2 of the reciprocal lattice for graphene are

b1 = 2π
a2 × k

|a1 × a2|
=

2π

a
√
3

(
i− j√

3

)
, (209)

b2 = 2π
k × a1

|a1 × a2|
=

2π

a
√
3

(
i+

j√
3

)
. (210)

38



Figure 17: Reciprocal lattice with the first Brillouin zone (shaded) and points on its
boundary.

9 Electronic states in graphene

9.1 The tight-binding method

The tight-binding method is a semi-empirical method that is used to calculate
the energy bands and Bloch states of a material. The specific assumptions of the
tight-binding method are:

1. Near each atomic site, the Hamiltonian of the crystal is a good approximation
to the full Hamiltonian for the atom.

2. The atomic states are localized around the atomic sites, with a small overlap
with the states on neighbouring sites.

3. The Bloch sum is a good approximation to the Bloch functions.

We begin with the assumption that an electron bound to a particular atom at lattice
position Ri. Based on there assumptions, we can write the trial wave function ψk(r)
of the system is as the form of a Bloch sum:

ψk(r) =
1√
N

∑
Ri

eik·Riϕ(r −Ri), (211)

where N is the number of unit cells in the crystal, and k = (kx, ky) is the two-
dimensional wave vector. We now show this wave function satisfies Bloch’s theorem.

ψk(r) = eik·r
1√
N

∑
Ri

eik·(Ri−r)ϕ(r −Ri) = eik·ruk(r), (212)

where
uk(r) =

1√
N

∑
Ri

e−ik·(r−Ri)ϕ(r −Ri). (213)
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So we have
uk(r +Rj) =

1√
N

∑
Ri

e−ik·(r+Rj−Ri)ϕ(r +Rj −Ri)

=
1√
N

∑
Rk

e−ik·(r−Rk)ϕ(r −Rk) = uk(r),
(214)

where Rk = Ri − Rj. Thus, uk(r) has the periodicity of the lattice and ψk(r) is a
Bloch function:

ψk(r) = eik·ruk(r), uk(r +Ri) = uk(r). (215)

Then we can calculate the energy dispersion E(k):

E(k) = ⟨ψk(r)| Ĥ |ψk(r)⟩

=
1

N

∑
Ri

∑
Rj

eik·(Rj−Ri) ⟨ϕ(r −Ri)| Ĥ |ϕ(r −Rj)⟩

=
1

N

∑
Ri

∑
Rj

eik·(Rj−Ri) ⟨ϕ(r′)| Ĥ |ϕ(r′ − (Rj −Ri))⟩

=
∑
Rk

eik·Rk ⟨ϕ(r′)| Ĥ |ϕ(r′ −Rk)⟩ ,

(216)

where r′ = r −Ri and Rk = Rj −Ri. Consider the case Rk = 0, then the integral
⟨ϕ(r′)| Ĥ |ϕ(r′ −Rk)⟩ reduces to

⟨ϕ(r′)| Ĥ |ϕ(r′)⟩ = E0 ⟨ϕ(r′)|ϕ(r′)⟩ = E0, (217)

where E0 is the energy of the atomic state ϕ. If the kth nearest neighbours are
located at the positions Rk = τ k, then

E(k) = E0 +
∑
τk

eik·τk ⟨ϕ(r′)| Ĥ |ϕ(r′ − τ k)⟩ = E0 +
∑
τk

eik·τkt(|τ k|), (218)

where t(|τ k|) = ⟨ϕ(r′)| Ĥ |ϕ(r′ − τ k)⟩ is a hopping integral that describes the cou-
pling between an orbital at the origin to one at the kth neighbour shell.

9.2 Tight-binding formulation for graphene

Graphene has two atoms A and B per unit cell, with each atom contributing 4
electrons to the bonding: 3 to the σ-bonds between adjacent atoms for binding, and
1 π-orbital which is perpendicular to the graphene for conduction. We will consider
only the π electrons. The Bloch sums for the two atomic types A and B are

ψ
(α)
k (r) =

1√
N

∑
Rα

eik·Rαϕα(r −Rα), α = A,B. (219)

The trial wave function for graphene is a Bloch sum:

ψk(r) = akψ
(A)
k (r) + bkψ

(B)
k (r) (220)
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where the coefficients ak and bk are to be determined. This wave function is a
solution of the Schrödinger equation Ĥψk = Ekψk, i.e.,

Ĥ
[
akψ

(A)
k (r) + bkψ

(B)
k (r)

]
= Ek

[
akψ

(A)
k (r) + bkψ

(B)
k (r)

]
. (221)

Multiply in turn by ψ(A)∗
k (r) and ψ

(B)∗
k (r), and integrating over the unit cell. Using

Dirac notation, we obtain

ak ⟨A,k| Ĥ |A,k⟩+ bk ⟨A,k| Ĥ |B,k⟩ = akEk ⟨A,k|A,k⟩+ bkEk ⟨A,k|B,k⟩ , (222)

ak ⟨B,k| Ĥ |A,k⟩+ bk ⟨B,k| Ĥ |B,k⟩ = akEk ⟨B,k|A,k⟩+ bkEk ⟨B,k|B,k⟩ . (223)

By using the abbreviated notation (Hk)αβ = ⟨α,k| Ĥ |β,k⟩ and (Sk)αβ = ⟨α,k|β,k⟩,
the equations simplify to

(Hk)AAak + (Hk)ABbk = Ek(Sk)AAakak + Ek(Sk)ABbk, (224)
(Hk)BAak + (Hk)BBbk = Ek(Sk)BAakak + Ek(Sk)BBbk, (225)

which can be expressed in matrix form:(
(Hk)AA − Ek(Sk)AA (Hk)AB − Ek(Sk)AB

(Hk)BA − Ek(Sk)BA (Hk)BB − Ek(Sk)BB

)(
ak
bk

)
=

(
0
0

)
. (226)

The eigenvalues Ek obtained from solutions of the secular equation

det(Hk − EkSk) = 0. (227)

9.2.1 Nearest-neighbour approximation

We first consider the diagonal elements (Hk)αα and (Sk)αα. For α = A, we have

(Hk)AA =
1

N

∑
RA

∑
R′

A

eik·(R
′
A−RA) ⟨ϕA(r −RA)| Ĥ |ϕA(r −R′

A)⟩

=
∑
RA

eik·RA ⟨ϕA(r)| Ĥ |ϕA(r −RA)⟩ ,
(228)

(Sk)AA =
1

N

∑
RA

∑
R′

A

eik·(R
′
A−RA) ⟨ϕA(r −RA)|ϕA(r −R′

A)⟩

=
∑
RA

eik·RA ⟨ϕA(r)|ϕA(r −RA)⟩ .
(229)

Since there is only one A-atom in the unit cell, RA = 0, then

(Hk)AA ≈ ⟨ϕA(r)| Ĥ |ϕA(r)⟩ ≈ E0, (230)
(Sk)AA ≈ ⟨ϕA(r)|ϕA(r)⟩ = 1, (231)

where E0 is the energy of the atomic 2p level. Similarly,

(Hk)BB = (Hk)AA ≈ E0, (Sk)BB = (Sk)AA ≈ 1. (232)
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Figure 18: An A-atom (open circle) and nearest-neighbor B-atoms (filled circles) at
positions δ1, δ2, and δ3 with respect to that A-atom. The shaded circles indicate the
circular symmetry of the pz orbitals with respect to each atomic centre.

We now turn our attention to the off-diagonal matrix elements

(Hk)AB =
1

N

∑
RA

∑
RB

eik·(RA−RB) ⟨ϕA(r −RA)| Ĥ |ϕB(r −RB)⟩ . (233)

Taking an A-atom as a reference, the three nearest-neighbor B-atoms are located at
positions δ1, δ2, and δ3 with respect to that A-atom

δ1 = aj, δ2 =
a
√
3

2
i− a

2
j, δ3 = −a

√
3

2
i− a

2
j. (234)

the positions of B atoms are RB−RA = δi, for i = 1, 2, 3. Thus, the nearest-neighbor
approximation to the matrix element

(Hk)AB =
1

N

∑
RA

[
eik·δ1 ⟨ϕA(r −RA)| Ĥ |ϕB(r − (RA + δ1))⟩

+ eik·δ2 ⟨ϕA(r −RA)| Ĥ |ϕB(r − (RA + δ2))⟩
+ eik·δ3 ⟨ϕA(r −RA)| Ĥ |ϕB(r − (RA + δ3))⟩

]
.

(235)

The circular symmetry of the pz orbitals about each site means that each of the three
integrals on the right-hand side has the same value. We can define

t = ⟨ϕA(r −RA)| Ĥ |ϕB(r − (RA + δi))⟩ , i = 1, 2, 3. (236)

So the matrix element

(Hk)AB =t
(
eik·δ1 + eik·δ2 + eik·δ3

)
=t

[
eikya + exp

(
ikxa

√
3

2
− ikya

2

)
+ exp

(
−ikxa

√
3

2
− ikya

2

)]

=t

[
eikya + 2 exp

(
−ikya

2

)
cos

(
kxa

√
3

2

)]
= tf(k).

(237)
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And similarly,

(Hk)BA = (Hk)
∗
AB = tf ∗(k), (Sk)AB = (Sk)

∗
BA = sf(k), (238)

where
s = ⟨ϕA(r −RA)|ϕB(r − (RA + δi))⟩ , i = 1, 2, 3. (239)

9.2.2 Energy bands of graphene

From the results of the previous section, the matrix elements of the Hamiltonian
and the overlap matrix are

Hk =

(
E0 tf(k)

tf ∗(k) E0

)
, Sk =

(
1 sf(k)

sf ∗(k) 1

)
, (240)

then
det(Hk − EkSk) = (E0 − Ek)

2 − (t− sEk)
2|f(k)|2 = 0. (241)

This yields

E±(k) =
E0 ± t|f(k)|
1± s|f(k)|

, (242)

where

|f(k)| =
√
f(k)f ∗(k)

=

√√√√1 + 4 cos

(
3kya

2

)
cos

(
kxa

√
3

2

)
+ 4 cos2

(
kxa

√
3

2

)
.

(243)

There are three fitting parameters in the energy dispersion: E0 (atomic energy level),
t (hopping parameter), and s (overlap parameter). These parameters can be deter-
mined from first principles calculations or estimated from experiments. We use

E0 = 0, t = −3.033 eV, s = 0.129. (244)

The two bands E±(k) meet at the Dirac points K and K ′. The dispersion of the
energy bands near the cusp at the K points is linear in k. The typical dispersion of
an energy band near an extremum is quadratic in k, as is seen near the Γ point (the
origin of k).

9.3 Low-energy dispersion and the Dirac equation

The K points in the graphene satisfy f(Kξ) = 0. This gives

Kξ = ξ

(
4π

3a
√
3

)
i, (245)

where ξ = ±1 (ξ = 1 refers to K and ξ = −1 refers to K ′). Defining k = Kξ + p, so
we have

kx =
4πξ

3a
√
3
+ px, ky = py. (246)
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Figure 19: The energy bands for graphene.

Thus

f(Kξ + p) = −3a

2
(pxξ − ipy) + . . . , (247)

|f(Kξ + p)| = 3a

2

√
p2x + p2y =

3a|p|
2

. (248)

The dispersion near the K points are

E±(p) = ± t|f(k)|
1± s|f(k)|

≈ ±3at|p|
2

= ±ℏv|p|, (249)

where v is the speed of the electrons in the linear regime of the dispersion relation:

v =
3a|t|
2ℏ

≃ c

300
. (250)

Recall the Hamiltonian. We have set E0 = 0, so the linearized form of the Hamilto-
nian is

Ĥ(p) = −3ta

2

(
0 ξpx − ipy

ξpx + ipy 0

)
= ℏv(ξpxσ̂x + pyσ̂y). (251)

9.4 Pseudospin and chirality

Using the identifications

px = −iℏ∂x, py = −iℏ∂y, (252)

we write the effective Hamiltonian as

Ĥ = −iℏv
(

0 ξ∂x − i∂y
ξ∂x + i∂y 0

)
. (253)

Solve the eigenfunction Ĥψ = Eψ, in which ψ is a two-component spinor

ψ =

(
α
β

)
eip·r/ℏ, (254)
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where α and β are to be determined, and r = (x, y). Then

−iℏ∂ψ
∂x

=

(
α
β

)
px, −iℏ∂ψ

∂y
=

(
α
β

)
py. (255)

The eigenfunction becomes(
−E v(ξpx − ipy)

v(ξpx + ipy) −E

)(
α
β

)
=

(
0
0

)
. (256)

This yields the eigenvalues E± = ±v
√
p2x + p2y = ±vp. This relation gives

v(ξpx + ipy)α + vpβ = 0 ⇒ ξpx + ipy
p

= −β
α

= ξeiξφ, (257)

where
px = p cosφ, py = p sinφ. (258)

The corresponding eigenvectors

ψ± =
1√
2

(
1

±ξeiξφ
)
eip·r/ℏ. (259)

To simplify the calculation, we use the notation ψ± = |±⟩. The lower sign(-) refers
to the lower (valence) band and the upper sign (+) to the upper (conduction) band,
ξ = 1 to the K-point in the Brillouin zone and ξ = −1 to the K ′ point. The two
eigenfunctions are orthogonal and normalized:

⟨±|±⟩ = 1, ⟨±|∓⟩ = 0. (260)

The electron density localised on the A sites corresponds to a pseudo-spin “up”
state, and the electron density localized on the B sites corresponds to a pseudo-spin
“down” state: (

1
0

)
= |↑⟩ ,

(
0
1

)
= |↓⟩ . (261)

So the eigenvectors

ψ± =
1√
2

(
1

±ξeiξφ
)
eip·r/ℏ =

1√
2

(
|↑⟩ ± ξeiξφ |↓⟩

)
eip·r/ℏ. (262)

In addition to the pseudospin degree of freedom, the electrons are chiral, mean-
ing that the orientation of the pseudospin is related to the direction of momentum.
The spinor part of the Hamiltonian

Ĥ(p) = ℏv(ξpxσ̂x + pyσ̂y) = ℏpv(ξσ̂x cosφ+ σ̂y sinφ). (263)

By defining the pseudospin vector σ̂ = (σ̂x, σ̂y) and the unit vector n = (ξ cosφ, sinφ),
the Hamiltonian can be written as

Ĥ(p) = ℏvpσ̂ · n. (264)
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The chiral operator σ̂ ·n projects the pseudospin onto the direction of quantization.
And we can see

(σ̂ · n)ψ± = ±ψ±. (265)

Another way to determine the relationship between the pseudospin and the
momentum is to calculate the expectation ⟨σ̂⟩± = (⟨σ̂x⟩±, ⟨σ̂y⟩±) of the pseudospin
operator in the state ψ±.

⟨σ̂x⟩± = ⟨±| σ̂x |±⟩ = ±ξ cosφ, (266)
⟨σ̂y⟩± = ⟨±| σ̂y |±⟩ = ± sinφ. (267)

The probability p(φ) to scatter in a direction φ, where α = 0 is the forward direction,
and

p(φ) = |ψ∗
±(φ)ψ±(0)|2 = cos2(φ/2). (268)

This probability is anisotropic and displays an absence of backscattering, that is,
p(π) = 0. Scattering into a state with opposite momentum is prohibited because it
requires a reversal of the pseudospin.
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10 Symmetries of electronic states

10.1 Symmetry in quantum mechanics

10.1.1 Unitary transformations

Unitary matrices Û are defined by the property that

Û Û † = Û †Û = 1. (269)

This definition implies that

det
(
Û Û †

)
= det

(
Û
)
det
(
Û †
)
= det

(
Û
) [

det
(
Û
)]∗

=
∣∣∣det(Û)∣∣∣2 , (270)

so
∣∣∣det(Û)∣∣∣ = 1. In special case, we have det

(
Û
)

= 1. Such matrices, which
have a direct connection to rotations in Euclidean space, arise in many applications,
including two-level systems, such as spin and isospin.

In d-dimensional complex space, the vectors connected by a unitary matrix Û
are defined as a′ = Ûa and b′ = Ûb. The transformation of inner product

a′†b′ =
(
Ûa
)† (

Ûb
)
= a†Û †Ûb = a†b, (271)

is invariant under unitary transformations.
In quantum mechanics, we have ϕ′ = Ûϕ and ψ′ = Ûψ. Then the transformation

of the inner product

⟨ϕ′|ψ′⟩ =
〈
Ûϕ
∣∣∣Ûψ〉 =

〈
ϕ
∣∣∣Û †Ûψ

〉
= ⟨ϕ|ψ⟩ . (272)

So the unitary transformations conserve probability amplitudes.

10.1.2 Symmetries of Hamiltonians

Consider the time-independent Schrodinger equation

Ĥψ = Eψ. (273)

The unitary transformation of the equation

Û(Ĥψ) = E(Ûψ) = Eψ′. (274)

We now insert the unitary operator 1 = Û †Û then obtain

(ÛĤ)ψ = ÛĤÛ †Ûψ = (ÛĤÛ †)(Ûψ) = Ĥ ′ψ′ = Eψ′, (275)

where Ĥ ′ = ÛĤÛ †. The transformation of Ĥ is called a similarity transformation.
Suppose the transformed and the original Hamiltonian are the same: Ĥ ′ = Ĥ,

i.e., ÛĤÛ †, then we obtain

ĤÛ − ÛĤÛ †Û = ĤÛ − ÛĤ = [Ĥ, Û ] = 0, (276)

so that Û commutes with the Hamiltonian. A unitary operator that commutes with
the Hamiltonian is said to be a symmetry of that Hamiltonian.
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10.2 Parity in quantum mechanics

10.2.1 Coordinate and momentum eigenstates

The inversion operator / parity operator is defined on the Hilbert space. In
the coordinate representation

P̂ |r⟩ = |−r⟩ . (277)

Applying the inversion operator again

P̂ 2 |r⟩ = P̂ |−r⟩ = |r⟩ , (278)

so we have P̂ 2 = 1. We also have

⟨r′| P̂ †P̂ |r⟩ = ⟨−r′|−r⟩ = ⟨r′|r⟩ , (279)

so P̂ †P̂ = 1. So we find
P̂ † = P̂ , P̂ †P̂ = P̂ P̂ † = 1, (280)

which shows that P̂ is both Hermitian and unitary.
Now we look the momentum eigenstates

P̂ |p⟩ =
∫
P̂ |r⟩ ⟨r|p⟩ dr =

∫
|−r⟩ ⟨r|p⟩ dr =

∫
|r⟩ ⟨−r|p⟩ dr, (281)

with the relationship

⟨r|p⟩ = 1√
2π

eip·r/ℏ. (282)

Therefore we have
P̂ |p⟩ = |−p⟩ . (283)

Thus, the momentum operator changes sign under inversion.

10.2.2 Operators under parity

For the position operator r̂, we begin with the action of P̂ †r̂P̂ on an arbitary
state vector |ψ⟩

P̂ †r̂P̂ |ψ⟩ =
∫
P̂ †r̂P̂ |r′⟩ ⟨r′|ψ⟩ dr′ =

∫
P̂ †r̂ |−r′⟩ ⟨r′|ψ⟩ dr′

=

∫
(−r′)P̂ † |−r′⟩ ⟨r′|ψ⟩ dr′ =

∫
(−r′) |r′⟩ ⟨r′|ψ⟩ dr′

=

∫
(−r̂) |r′⟩ ⟨r′|ψ⟩ dr′ = −r̂ |ψ⟩ .

(284)

Since |ψ⟩ is an arbitrary state vector, we conclude that

P̂ †r̂P̂ = −r̂, (285)

then we have
P̂ P̂ †r̂P̂ + P̂ r̂ = r̂P̂ + P̂ r̂ = {P̂ , r̂}

anti-commute
= 0. (286)
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Similarly, for p̂, we obtain P̂ †p̂P̂ = −p̂ and {P̂ , p̂} = 0.
The transformation of the angular momentum under inversion than follows

P̂ †L̂P̂ = P̂ †(r̂ × p̂)P̂ = (P̂ †r̂P̂ )× (P̂ †p̂P̂ ) = (−r̂)× (−p̂) = L̂. (287)

In this case
[P̂ , L̂] = P̂ L̂− L̂P̂ = 0. (288)

The spin operator Ŝ, being a (non-classical) form of angular momentum, also com-
mutes with the inversion operator

[P̂ , Ŝ] = P̂ Ŝ − ŜP̂ = 0, (289)

and the total angular momentum Ĵ = L̂+ Ŝ.

10.2.3 Commutation with a Hamiltonian

Suppose we have a Hamiltonian

Ĥ =
p̂2

2m
+ V (r̂). (290)

The transformation of this Hamiltonian takes the form

P̂ †ĤP̂ =
1

2m
P̂ †p̂2P̂ + P̂ †V (r̂)P̂ =

p̂2

2m
+ P̂ †V (r̂)P̂ . (291)

As for P̂ †V (r̂)P̂ , we find that [P̂ , r̂2] = 0. Hence, for every even power r̂2k, k =
0, 1, 2, . . . , r̂2k is invariant under the transformation. So with even potential, the
inversion operator commutes with the Hamiltonian

{Ĥ, P̂} = 0, (292)

in which case parity is a symmetry of the Hamiltonian.

10.3 Time-reversal

10.3.1 Time-reversal in classical mechanics

Consider Hamilton’s equations of motion in classical mechanics

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, 2, . . . , N. (293)

The Hamiltonian has the general form

H =
n∑

i=1

p2
i

2mi

+ V (q1, q2, . . . , qN). (294)
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Now we consider time-reversal (t → −t). The coordinates qi are invariant,but
time-derivatives q̇i are changed:

T̂qi(t) = qi(−t), T̂ q̇i(t) = −q̇i(−t). (295)

Similarly, since pi = mdqi(t)
dt

,

T̂pi(t) = −pi(−t), T̂ ṗi(t) = ṗi(−t). (296)

Thus, Hamilton’s equations become

q̇(−t) = ∂H

∂pi(−t)
, ṗ(−t) = − ∂H

∂qi(−t)
. (297)

So Hamilton’s equations of motion are invariant under time reversal.
For Newton’s second law

m
d2r

dt2
= F , (298)

and a time-independent force F

T̂F = T̂

(
m
d2r

dt2

)
= m

d2r

d(−t)2
= m

d2r

dt2
= F , (299)

which shows that Newton’s second law is time-reversal invariant provided the force
is time-reversal invariant.

A different story emerges for the Lorentz force of a charged particle moving in
a constant magnetic field

m
d2r

dt2
= q(v ×B) = q

(
dr

dt
×B

)
. (300)

Motion in a static electric field is time-reversal invariant, but apparently not in a
magnetic field.

The magnetic field is produced by the curl of a vector potential B = ∇ × A,
where

A(r) =
µ0

4π

∫
J(r′)dr′

|r − r′|
. (301)

The current density is determined by charges moving with velocities v(t), that is
J = qv. Under time reversal symmetry the velocities of all particles change sign,
v(−t) = −v(t), so J → −J , which leads to A → −A and therefore to B → −B.
Thus, if we expand “the system” to include the charges that produce these fields,
time-reversal invariance is restored.

10.3.2 Time-reversal in quantum mechanics

The time-dependent Schrödinger equation for a charged particle in a static elec-
tric field E = −∇Φ is

iℏ
∂Ψ(r, t)

∂t
=

(
− ℏ2

2m
∇2 + qΦ

)
Ψ(r, t). (302)
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Firstly, we transfer t→ −t:

−iℏ∂Ψ(r,−t)
∂t

=

(
− ℏ2

2m
∇2 + qΦ

)
Ψ(r,−t), (303)

and take the complex conjugate of the Schrödinger equation:

iℏ
∂Ψ∗(r,−t)

∂t
=

(
− ℏ2

2m
∇2 + qΦ

)
Ψ∗(r,−t). (304)

So we find Ψ(r, t) and Ψ∗(r,−t) satisfy the same Schrödinger equation.
Next, we look at the magnetic field B = ∇ × A, the Schrödinger equation

becomes

iℏ
∂Ψ(r, t)

∂t
=

1

2m
(−iℏ∇− qA)2Ψ(r, t)

=
1

2m

[
−ℏ2∇2 + iℏq(∇ ·A+A ·∇) + q2A2

]
Ψ(r, t).

(305)

In this case, if Ψ(r, t) is a solution, we cannot immediately conclude that Ψ∗(r,−t)
is also a solution, because of the terms linear in A:

iℏ
∂Ψ∗(r,−t)

∂t
=

1

2m

[
−ℏ2∇2 − iℏq(∇ ·A+A ·∇) + q2A2

]
Ψ∗(r,−t). (306)

If we get the magnetic field by replace A → −A, then the Schrödinger equation is
invariant under time-resersal.

10.3.3 More general

To explore time reversibility in greater generality, we define the time-reversal
operator T̂ . The time-dependent Schrödinger equation is

iℏ
∂

∂t
ψ = Ĥψ. (307)

We first operator the equation from the left by the time-reversal operator T̂ :

T̂

(
iℏ
∂

∂t
ψ

)
= T̂

(
Ĥψ
)
. (308)

Then we insert the identity 1 = T̂−1T̂(
T̂ iℏT̂−1

)(
T̂
∂

∂t
T̂−1

)(
T̂ψ
)
=
(
T̂ ĤT̂−1

)(
T̂ψ
)
. (309)

For the time-independent Hamiltonian

T̂ ĤT̂−1 = Ĥ, (310)
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and the transformation of the time-derivative is

T̂
∂

∂t
T̂−1 =

∂

∂(−t)
= − ∂

∂t
. (311)

So the transformations becomes

−
(
T̂ iℏT̂−1

) ∂(T̂ψ)
∂t

= Ĥ(T̂ψ). (312)

Now we want to find the transformation of i. We note that [x̂, p̂] = iℏ, and this yields

T̂ iℏT̂−1 =T̂ [x̂, p̂]T̂−1 = T̂ (x̂p̂− p̂x̂)T̂−1

=(T̂ x̂T̂−1)(T̂ p̂T̂−1)− (T̂ p̂T̂−1)(T̂ x̂T̂−1)

=x̂(−p̂)− (−p̂)x̂ = −[x̂, p̂] = −iℏ.
(313)

Thus, we have
T̂ iℏT̂−1T̂ + iℏT̂ = T̂ iℏ+ iℏT̂ = {T̂ , iℏ} = 0. (314)

So, the transformed time-reversed Schrödinger equation with a time-independent
Hamiltonian read

iℏ
∂(T̂ψ)

∂t
= Ĥ(T̂ψ), (315)

where
T̂ψ(r, t) = ψ∗(r,−t). (316)

ψ(r, t) and ψ∗(r,−t) are both satisfy the same Schrodinger equation.

10.3.4 Anti-unitary operator

Eq. (313) shows that T̂ must include complex conjugate K̂. For any complex
number z = a+ ib, where a and b are real numbers,

K̂zK̂−1 = K̂(a+ ib)K̂−1 = a− ib = z∗, (317)

implies that K̂2 = 1. The time-reversal operator can be expressed as

T̂ = ÛK̂, (318)

where Û is a unitary operator. Such operators T̂ are called anti-unitary.
To see the effect of T̂ on inner products, we choose the two states

|ψ⟩ =
∑
n

⟨n|ψ⟩ |n⟩ , |ϕ⟩ =
∑
m

⟨m|ϕ⟩ |m⟩ . (319)

Applying T̂ to |ψ⟩ yields

|ψ′⟩ = T̂ |ψ⟩ = ÛK̂ |ψ⟩ =
∑
n

(
K̂ ⟨n|ψ⟩

)(
Û |n⟩

)
=
∑
n

⟨ψ|n⟩ Û |n⟩ . (320)
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Similarly, we have
|ϕ′⟩ =

∑
m

⟨ϕ|m⟩ Û |m⟩ . (321)

So the inner product of the transformed states is

⟨ψ′|ϕ′⟩ =
∑
m,n

⟨n|ψ⟩ ⟨n| Û † ⟨ϕ|m⟩ Û |m⟩ =
∑
m,n

⟨ϕ|m⟩ ⟨n| Û †Û |m⟩ ⟨n|ψ⟩

=
∑
m,n

⟨ϕ|m⟩ ⟨n|m⟩ ⟨n|ψ⟩ =
∑
n

⟨ϕ|n⟩ ⟨n|ψ⟩ = ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩∗ .
(322)

Although this result shows that the two states are reversed in the inner product, lead-
ing to the complex conjugate of the amplitude, the magnitude of the inner product is
unaffected

| ⟨ψ′|ϕ′⟩ | = | ⟨ψ|ϕ⟩∗ | = | ⟨ψ|ϕ⟩ |. (323)

This is the essence of Wigner’s theorem: Suppose there is a mapping of a ket space
onto itself, say, |ϕ⟩ and |ψ⟩ into |ϕ′⟩ and |ψ′⟩, respectively, such that absolute values
of the scalar products are preserved, that is,

| ⟨ψ′|ϕ′⟩ | = | ⟨ψ|ϕ⟩ |, (324)

for all |ϕ⟩ and |ψ⟩. Then, to within inessential phase factors, the mapping must be
either a linear unitary operator or an anti-unitary operator:

⟨ψ′|ϕ′⟩ =

{
⟨ψ|ϕ⟩ , unitary,
⟨ϕ|ψ⟩ , anti-unitary.

(325)

10.3.5 Transformations of operators

1. The transformation of the position operator and the momentum operator:

T̂ r̂T̂−1 = r̂, T̂ p̂T̂−1 = −p̂. (326)

2. The transformation of the angular momentum operator:

T̂ L̂T̂−1 = T̂ (r̂ × p̂)T̂−1 = −L̂. (327)

3. our conclusion can be extended to all angular momenta with [Ĵi, Ĵj] = iℏεijkĴk:
orbital, spin, and combinations of the two:

T̂ Ĵ T̂−1 = −Ĵ . (328)

10.3.6 Time-reversed with spin: Kramers’ degeneracy

The spin angular momentum Ŝ is odd under time-reversal

T̂ ŜT̂−1 = −Ŝ. (329)
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For spin-1/2 particles, Ŝ = 1
2
σ̂, where σ̂ = (σ̂x, σ̂y, σ̂z) are the Pauli matrices. Hence

T̂ σ̂T̂−1 = −σ̂. (330)

The standard choice of T̂ is
T̂ = −iσ̂yK̂, (331)

where K̂ is the complex conjugation operator and we have

T̂ 2 = (−iσ̂yK̂)2 = (−iσ̂y)
2 = −1. (332)

This should be compared by

T̂ 2Ψ(r, t) = T̂ [T̂Ψ(r, t)] = T̂Ψ∗(r,−t) = Ψ(r, t), (333)

so T̂ 2 = 1. In general, for integer spins T̂ 2 = 1,and for half integer spins, T̂ 2 = −1.
An important consequence of the time reversal of a spin-1/2 particle is Kramer’s

theorem for the degeneracy of states governed by a time-reversal-invariant Hamil-
tonian. We start from ĤΨ = λΨ. This Hamiltonian is taken to be time-reversal-
invarient:

[Ĥ, T̂ ] = 0. (334)

Applyting the tine-resversal operator to generate Ψ′ = T̂ψ, then

ĤΨ′ = ĤT̂Ψ = T̂ ĤΨ = λT̂Ψ = λΨ′, (335)

so Ψ and Ψ′ have the same eigenvalue. There are two possibilities:

1. Ψ and Ψ′ are the same;

2. Ψ and Ψ′ are different.

We calculate the overlap

⟨Ψ|Ψ′⟩ =
〈
Ψ
∣∣∣T̂Ψ〉 =

〈
T̂Ψ
∣∣∣T̂ 2Ψ

〉∗
= −

〈
T̂Ψ
∣∣∣Ψ〉∗ = −

〈
Ψ
∣∣∣T̂Ψ〉 = −⟨Ψ|Ψ′⟩ . (336)

Hence ⟨Ψ|Ψ′⟩ = 0, so the two states are orthogonal, which means they are distinct
and degenerate. This is the Kramer’s theorem: The states of a spin-1/2 particle
governed by a time-reversal-invariant Hamiltonian are (at least) doubly degenerate.

10.4 Symmetries of Hamiltonians

The most general Hamiltonian in a two-dimensional Hilbert space is

Ĥ(k) = h0(k)1+ h(k) · σ̂ =

(
h0(k) + h3(k) h1(k)− ih2(k)
h1(k) + ih2(k) h0(k)− h3(k)

)
. (337)

The eigenvalues E± of Ĥ are

E±(k) = h0(k)±
√
h21(k) + h22(k) + h23(k). (338)

Set h0 = 0, then

Ĥ =

(
h3(k) h1(k)− ih2(k)

h1(k) + ih2(k) −h3(k)

)
. (339)
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10.4.1 Parity and time-reversal symmetry

The parity operator has two effects: (i) the reversal of wave vectors, k → −k,
and (ii) the exchange of A and B sites, AA ↔ BB and AB ↔ BA. These are
operated by P̂ and σ̂x:

P̂ f(k) = f(−k), σ̂x

(
A
B

)
=

(
B
A

)
. (340)

As P̂ and σ̂x operate on different spaces, they commute, P̂ σ̂x = σ̂xP̂ , and P̂ 2 = σ̂2
x =

1. We have

(σ̂xP̂ )Ĥ(σ̂xP̂ )
−1 =σ̂xP̂ ĤP̂

−1σ̂−1
x = σ̂xĤ(−k)σ̂−1

x

=

(
−h3(−k) h1(−k) + ih2(−k)

h1(−k)− ih2(−k) h3(−k)

)
.

(341)

Compared to Eq.(339), h(k) must satisfy:

h1(−k) = h1(k), h2(−k) = −h2(k), h3(−k) = −h3(k). (342)

Now we consider the time-resersal operator:

T̂ Ĥ(k)T̂−1 = Ĥ(−k) =

(
h3(−k) h1(−k) + ih2(−k)

h1(−k)− ih2(−k) −h3(−k)

)
. (343)

This requires

h1(−k) = h1(k), h2(−k) = −h2(k), h3(−k) = h3(k). (344)

By comparing the two requirements, we that the restrictions on h1 and h2 are com-
patible and require that h1 is an even function and h2 is an odd function. The
conditions on h3:

h3(−k) = h3(k) = −h3(k) = 0. (345)

Hence, the general form of the Hamiltonian that is invariant under time-reversal and
parity is

Ĥ(k) =

(
0 h1(k)− ih2(k)

h1(k) + ih2(k) 0

)
= h1(k)σ̂x + h2(k)σ̂y. (346)

The eigenvalues are

E±(k) = ±
√
h21(k) + h22(k). (347)

We have E(D) = 0 at the Dirac points D, so

h1(−D) = h1(D) = 0, h2(−D) = −h2(D) = 0. (348)

Near the Dirac points, we expand h1(D + q) and h2(D + q) in q:

h1(D + q) ≈ v1 · q, (349)
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h1(−D + q) ≈ −v1 · q, (350)
h2(D + q) ≈ v2 · q, (351)
h2(−D + q) ≈ v2 · q, (352)

where the coefficient vi,x and vi,y are

±v1,x =
∂h1
∂qx

∣∣
±D
, ±v1,y =

∂h1
∂qy

∣∣
±D
, v2,x =

∂h2
∂qx

∣∣
±D
, v2,y =

∂h2
∂qy

∣∣
±D
. (353)

Recall the notation ±D = ξD, the low-energy Hamiltonian

Ĥ(q) = ξv1qxσ̂x + v2qyσ̂y. (354)

10.4.2 Lattice symmetry

The existence of Dirac cones at the edge of the hexagonal Brillouin zone origi-
nates with the honeycomb lattice. The band structure of graphene near the K and
K ′ points of the Brillouin zone is determined by the function tf(k) defined in

tf(k) = teik·δ1 + teik·δ2 + teik·δ1 . (355)

10.4.3 Symmetry breaking

The symmetries in graphene contain (i) parity symmetry, (ii) time-reversal sym-
metry and (iii) lattice symmetry.

1. Parity symmetry is broken by hexagonal BN (h-BN), which has the same lattice
as graphene, but with one atomic type (say, B) occupying the A-sites and the
other (N) occupying the B-sites.

2. Time-reversal symmetry can be broken by adding to the basic Hamiltonian a
complex second-neighbor hopping with the following characteristics: (i) the
hoppings are purely imaginary and have the same chirality, in that their ori-
entation follows the right-hand rule, and (ii) the same sublattices are coupled,
i.e. A with A and B with B. These hoppings break time-reversal and sublattice
symmetry.

3. The symmetry of the graphene lattice can be broken by applying strain to the
lattice.

56



11 Topological materials

11.1 Topology and topological invariant

Topology is the mathematical study of properties that remain unchanged under
continuous deformations, such as stretching, bending, and compression. It focuses
on identifying objects that can be continuously deformed into one another and de-
termining quantities associated with these objects that remain invariant during the
deformation process. These quantities are called topological invariants. Topology
does not allow operations like tearing, puncturing, or joining, as these are discontin-
uous changes.

11.1.1 The Gauss-Bonnet theorem

The basic theorem from plane geometry that the sum of the angles of a triangle
is 180◦ has a generalisation to a triangle on any surface (such as a sphere, resulting
in a spherical triangle). This generalization is the Gauss–Bonnet theorem:

ξ =
1

2π

∫
S

KdA = 2− 2g, (356)

where ξ is known as the Euler characteristic, S is the (closed) surface in question, K
is the Gaussian curvature, and g is the genus of the surface.

Take the sphere as an example. The Gaussian curvature of a sphere is a constant,
K = 1/R2, where R is the radius of the sphere. Then

ξ =
R2

2πR2

∫ 2π

0

∫ π

0

sin θdθdϕ = 2, (357)

which implies g = 0 for the sphere. For the torus, g = 1, again as expected from the
central hole.

The genus is a topological classification, meaning that two topologically equiv-
alent surfaces have the same genus.

11.2 Topological band theory

In topological band theory, continuous deformations of an object are replaced
by adiabatic evolutions of the band structure. Two insulators are considered topo-
logically equivalent if they can be transformed into one another by slowly changing
their Hamiltonians, ensuring that the systems always remain in their ground state.

Such a process is feasible if there is an energy gap, which dictates the time scale
for how slowly the adiabatic process must occur. If the gap closes, the adiabatic
process is no longer possible.

The two main goals of topological band theory are:

1. To identify new topological materials, including both two- and three-dimensional
materials.
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2. To classify distinct Hamiltonians, particularly to distinguish between ordinary
and topological insulators, as well as between different types of topological
insulators.

11.2.1 Two-level systems

Consider the Hamiltonian of a generic two-level system:

H = h · σ̂ =

(
h3 h1 − ih2

h1 + ih2 −h3

)
. (358)

By parametrizing h in terms of a polar angle θ and azimuthal angle ϕ

h = h(sin θ cosϕ, sin θ sinϕ, cos θ), (359)

the Hamiltonian becomes

H = h

(
cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
, (360)

with eigenvalues E± = ±h and the corresponding eigenstates

|u−⟩ =
(
sin(θ/2)e−iϕ

− cos(θ/2)

)
, |u+⟩ =

(
cos(θ/2)e−iϕ

sin(θ/2)

)
, (361)

where (−) means occupied states and (+) means unoccupied.
Consider the wave function corresponding to the lower energy level. The com-

ponents of the Berry connection:

Aθ = i ⟨u−| ∂θ |u−⟩ = 0, (362)
Aϕ = i ⟨u−| ∂ϕ |u−⟩ = sin2(θ/2). (363)

So the Berry curvature

Fθϕ = ∂θAϕ − ∂ϕAθ = sin(θ/2) cos(θ/2) =
1

2
sin θ. (364)

In Cartesian coordinates h = (x, y, z), the Berry curvature

F =
1

2

h

h3
(365)

is the field generated by a monopole at the origin h = 0. By integrating the Berry
curvature over a sphere containing the monopole, we find

1

2π

∫∫
S

Fθϕdθdϕ = 1. (366)

In general, when integrated over a closed manifold, the Berry curvature is quantised
in the units of 2π and is equal to the net number of monopoles enclosed by the
manifold. This is called the Chern number.
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The Berry phase can be computed only if the Hamiltonian has an energy gap.
For a Hamiltonian H(k) with many bands En(k), where n is again a band index, this
means that we can compute the Chern number only for an isolated band that does
not touch any other band. If there is a band touching, the Berry phase is undefined.
In terms of our analogy between the Berry phase and electromagnetism, we cannot
compute the electric or magnetic flux through a surface if there are electric or mag-
netic charges located on the surface because the electric or magnetic fields are not
defined at the points where their sources are. This analogy suggests that the sources
for Berry flux in momentum space are points where two bands touch, such as the
Dirac points at the K and K′ points of the Brillouin zone in graphene.

11.3 Spin-orbit interaction

This coupling of the spin of the electron to its orbital motion is known as spin-
orbit coupling. The Hamiltonian for spin-orbit coupling is

ĤSO = f(r)L · S. (367)

The Hamiltonian is invarant under parity and time-reversal.

11.4 The Kane-Mele Model

In the Kane-Mele model, a spin-orbit term

ĤSO = λSOσ̂zτzsz, (368)

is added to the Hamiltonian near the K and K ′ points. Here, τz is the valleys (K and
K ′ points) and sz is the electron spin (↑ or ↓). For sz = 1, the Hamiltonian reads

Ĥ(k) = v(kxτzσ̂x + kyσ̂y) + λSOσ̂zτz. (369)

For each valleys (Dirac points at K and K ′) separately

Ĥ+(k) = v(kxσ̂x + kyσ̂y) + λSOσ̂z, (370)

Ĥ−(k) = v(−kxσ̂x + kyσ̂y)− λSOσ̂z, (371)

where Ĥ+ is the Hamiltonian near K and Ĥ− is the Hamiltonian near K ′.
We now introduce a mass term m > 0, which applies to sublattice pseudospin,

but not to valley pseudospin:

Ĥ+(k) = v(kxσ̂x + kyσ̂y) + (m+ λSO)σ̂z, (372)

Ĥ−(k) = v(−kxσ̂x + kyσ̂y) + (m− λSO)σ̂z. (373)

There are two distinct possibilities (i) m≫ λSO and (ii) m ∼ λSO.
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11.5 Edge states

11.5.1 States at zero energy

In this section, we show that the spin current is carried by edge states, using the
Ĥ− block with sz = 1 as an example. We suppose that our two-dimensional current-
carrying material has an edge at y = 0, with the material occupying the region y < 0,
and vacuum (or a trivial insulator) for y > 0. There is a transitional symmetry along
the x-direction. We consider the state at kx = 0, with

py = ℏky = −iℏ ∂
∂y
, (374)

the Hamiltonian reads

Ĥ−(y) = −iℏvσ̂y
d

dy
+ (m− λso)σ̂z = −iℏvσ̂y

d

dy
+ m̃(y)σ̂z, (375)

where m̃ = m−λso changes sign at the edge y = 0. Now we consider the Schrödinger
equation Ĥ−(y)ψ0(y) = 0, and for ψ0(y), make the ansatz

ψ0(y) = iσ̂ye
f(y)ϕ. (376)

Substituting this trial solution into the Schrödinger equation,

Ĥ−(y)ψ0(y) =ℏvσ̂2
ye

f df

dy
ϕ+ m̃ef σ̂z(iσ̂y)ϕ = ef(y)

[
ℏv

df

dy
1+ m̃(y)σ̂x

]
ϕ = 0. (377)

Choose

ϕ =
1√
2

(
1
1

)
, (378)

then the equation becomes

ℏv
df

dy
+ m̃(y) = 0, (379)

whose solution is
f(y) = − 1

ℏv

∫ y

0

m̃(y′)dy′. (380)

Finally we find

ψ0(y) = exp

[
− 1

ℏv

∫ y

0

m̃(y′)dy′
]
iσ̂yϕ =

1√
2
exp

[
− 1

ℏv

∫ y

0

m̃(y′)dy′
](

1
−1

)
. (381)

Note the following properties of the solution:

1. The spinor part of the wave function indicates that this state mixes the two
sublattices by hopping along the boundary.

2. The same procedure applied to sz = −1 would yield an edge state whose
velocity is in the opposite direction.

3. We chose the Hamiltonian Ĥ− for one Dirac point. The same analysis applied
to Ĥ+ again yields two edge states, one for each spin.
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11.5.2 States at non-zero energy

We now consider edge states at non-zero energy. For sz = 1, the Schrödinger
equation reads

Ĥ−ψ =

(
iℏvσ̂x

∂

∂x
− iℏvσ̂y

∂

∂y
+ m̃(y)σ̂z

)
ψ = Eψ. (382)

We make the following ansatz for the eigenfunction:

ψ(x, y) = eikxxψ0(y). (383)

Substitution into the Hamiltonian yields

Ĥ−ψ =

(
iℏvσ̂x

∂

∂x
− iℏvσ̂y

∂

∂y
+ m̃(y)σ̂z

)
eikxxψ0(y)

=

[
−vℏkxψ0(y)− iℏvσ̂y

∂ψ0(y)

∂y
+ m̃σ̂zψ0(y)

]
eikxx

=− vℏkxψ0(y)e
ikxx = −vℏkxψ = E(kx)ψ,

(384)

where E(kx) = −vℏkx.

11.6 Topological character of Kane-Mele model

We take sz = 1 and consider Ĥ±(k):

Ĥ+(k) = v(kxσ̂x + kyσ̂y) + (m+ λSO)σ̂z, (385)

Ĥ−(k) = v(−kxσ̂x + kyσ̂y) + (m− λSO)σ̂z. (386)

These Hamiltonians can be written more concisely as Ĥ±(k) = h±(k) · σ̂, where

h±(k) = (±vkx, vky, m± λSO). (387)

Then, the unit vectors ĥ± = h±/|h±| maps the 2D momentum space (kx, ky) to a
unit space. The Chern number can be expressed as

Q =
1

4π

∫
BZ

h±

h3±
·
(
∂h±

∂kx
× ∂h±

∂ky

)
dkxdky

=
1

4π

∫
BZ

h±

h3±
·
[(

∂h±

∂kx
dkx

)
×
(
∂h±

∂ky
dky

)]
=

1

4π

∫
BZ

dΩ,

(388)

where h± = |h±|. For m > λSO, the hz-component of h+ is always positive and is,
therefore, confined to the upper hemisphere of the h-surface. Thus

Q+ =
2π

4π
=

1

2
. (389)
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The hz-component of h−is also positive, but the minus sign in the hx-component
relative to that of h+ changes the sign of the integral, so

Q− = −2π

4π
= −1

2
. (390)

Hence Q = Q+ + Q− = 0. this is the topological index associated with a trivial
insulator.

Now consider the case when m < λSO. h+ is positive

Q+ =
2π

4π
=

1

2
, Q− =

2π

4π
=

1

2
. (391)

Therefore, Q = Q+ +Q− = 1. As this case corresponds to a topological insulator.
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