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Array
Arrays provide O(1) random access but

khave a fixed size. )
p . (Singly Linked List )
Linked List
A linked list uses nodes connected by (Doubly Linked List )
kpointers. )
Linear Data Structures < (C'rcu'ar Linked List )
4 '
Stack
A stack follows the LIFO principle. )
4 '
Deque (Double-Ended Queue)
A deque allows insertion and deletion
from both ends.
L | Queue \ J
[A queue follows the FIFO principle. ] . . h
Priority Queue
A priority queue processes elements based
on priority rather than insertion order.

(Separate Chaining

-
Hash table
A hash table provides average O(1) lookup
{ (s {
(Open Addressing

Hash-based Data Structures < time.

Key --(Hash function)--> Bucket

Structure
Path, Cycle

i Weighted Graph,
Directed / Undirected Graph
Undirected Graph

HEINERRKE

(BFS ) {
)1

) (Dijkstra's Algorithm

(Shortest—Path Problems

(Floyd's Algorithm

Topological sort
KEMERNSTREINF

- (Graph ) <

. (Depth-First Search (DFS) ) t
Spanning Trees ; ! R
Let G be a Simple graph. A spanning tree FIGURE 6 The graph G. FIGURE?7 Depth-first search of G.
of G is a subgraph of G that is a tree

containing every vertex of G. (Breadth-First Search (BFS) )
r 7 N\
Begin by choosing any edge with smallest
weight, putting it into the spanning tree.

Successively add to the tree edges of
r (Prim's algorithm minimum weight that are incident to a vertex
already in the tree, never forming a simple
circuit with those edges already in the tree.

Stop when n -1 edges have been added.

"l
—/
A

J

Minimum spanning tree
A,r‘rlminimum spanning tree in a connected

weighted graph is a spanning tree that has | <
‘the smallest possible sum of weights of its

r [
| cateee choose an edge in the graph with minimum
: weight. Successively add edges with
= (Kruskal's algorithm minimum weight that do not form a simple
circuit with those edges already chosen. Stop
after n - 1 edges have been selected.
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A
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’

Node, Root, Edge

r (Basic concepts
Leaf Node / External Node, Internal Node

Subtree, Forest

J e/ N N NS\

(Parent, Child, Sibling, Ancestor, Descendant

- (Structu re ) 3 Degree
i Degree of a node / tree
. S
4 N
Depth
kDepth of a node )
-

Non-linear Data Structure <
- (Tree & Node Properties p
Height
kHeight of a node / tree )
{ \
\

Level
Level of a node
\ J

p
A binary tree where every node has either
0 or 2 children.

.

- (Full Binary Tree

p
A binary tree in which all levels are

completely filled, except possibly the last

level, and the last level has all nodes as far

(Complete Binary Tree
| left as possible.

Data Structure = <
r (BinaryTree ) <

A full binary tree in which all leaf nodes

are at the same level.

\

)
—A ——

= (Perfect Binary Tree

Trie Tree
A tree-like data structure used to store a
4 N\
A binary tree where the heights of the left

dynamic set of strings, where keys are
usually strings. It is very efficient for prefix-
and right subtrees of any node differ by at

based searches.
. Mmost one.
- (AVL Tree / Balanced Binary Tree ) \
N §i E/ \
— Binary Search Tree (BST) SRB MR y
= (Trees —_) 3 ~ | ® Left Child value < Root Value < Right Child | <
Value (Red-Black Tree )
(Common Types of Trees ) <
(Splay tree )
r ([m/Z] <= #ary at each node <=m )
(Tree for Searching ) 3 B Tree < ([m/z]q <= #key at each node <= m-1 )
m-ary Search Tree
- Leaf Node: LK =
ﬂEI]'I"fENodeE' ‘b E218subtree
B+ Tree N
S| B EREH, F T Node keyfRiFsubtreefZ A Eﬂt’éﬁ\NodeE”\[m/Z]ﬁsu btree
key \ y
(Leaf Noise: record )
Min-Heap
The key of a parent node is less than or
Heap kequal to the keys of its children. )
= (Tree for Sorting ) A specialized complete binary tree that p S
satisfies the heap property. Max-Heap
The key of a parent node is greater than or
kequal to the keys of its children. )
- Pre-order traversal { (Preﬁx (or Polish) expression )
Root -> Left Subtree -> Right Subtree )
In-order traversal { (Infix expression )
r (Depth-First Search (DFS) ) 3  Left Subtree -> Root -> Right Subtree ) >
- N (Postfix (or reverse Polish) expression )
. | Post-order traversal
; (Tree Traversal (iEi[%) ) < \Left SulsiEs = RSB Ee > Rest y Useful for deleting nodes and their
subtrees.
_ | Breadth-First Search (BFS) / Level-order Visits nodes level by level, from top to bottom,
Traversal and from left to right within each level. )
- (Time complexity Best / Worst / Average Case )
. . (Space complexity
- (Algorlthm Quality )
MRGHRNFIIPERTHZ MEENTE,
- ('stability T, SRS TR E RS AE
NFRzZHER & IEERERN.
%DHUEE’] tE, HEIXR(IEREA

Insertion Sort

53‘552)14‘?%, NETFRATERBAAF

A—iE, #HERNE, MKERRUE

\

Selection Sort

i<=[n/2], ERBIFLIRT RELE—

5|Fé§iﬁ”ﬁ*ﬁ,§ = ;
ENmENREE

JE ;
N

Heap Sort

- Algorithm <
(i&?%ﬁtr%

B

7

[EFMIILL, BE/\E9RET

\

Bubble Sort

28— Milpivot, /\pivot’E, ARpivots,
B 5llowHThighigsHEa

{
- (e { Esheu Sort
{
1
{
1

Quick Sort

il
—
A

S

r [

= (Sorting Algorithms

Divide and Conquer
Divide: B4R Bt 47D, HEB DT

HRE—TTE.

(Merge Selge ) 1 | Merge: BlESH T BATRAH, HEER
R,
BRGNS AR A, |

= (Counting Sort




Discrete Probability

- T

~ (Events

(Independent Events

) {
)4

(Random Variables

A Y4

(Uniform distribution

Expected Value and Variance J&

= (Conditional Probability P(X | Y) = P(XY) / P(Y)) <

p
Expected Values E(X)

The expected value, also called the expectation or mean, of the random variable X on the
sample s equal to

EX) = Y p(9)X(s).

The deviation of X at s € S is X(s) — E(X), the difference between the value of X and the
mean of X.

f

h)

(Variance V(X) = E((X-E(X))A2)

h)

Probability Distribution <

| Covariance (ih /5 %)
Cov(X)Y) = E((X-E(X))(Y-E(Y)))

s [(O, 1) distribution X ~ (O, 1)

[Bernoulli distribution X ~ B(n, p)

)

[Poisson distribution X~ P(A)

)

[Geometric distribution X ~ G(p)

JR

- Limit Theorems <

r (Markov's Inequality

(Chebyshev's Inequality

Law of Large Numbers (LLN)
as the number of trials of an experiment
increases, the sample average of the

expected value.

outcomes will converge to the theoretical

- [Central Limit Theorem (F/OMEFREIE)

] 4

p(X UY) = p(X) + p(Y) - p(XY)

(Definition: p(XY) = p(X)p(Y)

Independent random variables

The random variables X and Y on a sample space S are independent if
pX=rpandY =r) =pX=r)-p(Y =rp),

orin that X = r, and Y = r, equals the product of the probabilities

g Ly
that X = r, and Y = r,, for all real numbers r; and r,.

Suppose that S is a set with n elements.
The uniform distribution assigns the
kprobability 1/n to each element of S.

Bayes' Formula
P(AIB) = P(BIA)P(A) / P(B)

Updating beliefs according to new
evidence

Bayes’ Theorem

Suppose that E and F are events from a sample space S such that
P(E) # 0 and p(F) # 0. Then

P(E | F)p(F)
P(E | F)p(F) + p(E | F)p(F)

p(F|E)=

E(@X+b) =aE(X) + b

E(XT1+ X2+ ...+ Xn) = E(X1) + E(X2) +... + E(Xn)

EXEYMIZ, E(XY)=E(X)E(Y)

V(X) = E(XA2) - EA2(X)

V(cX) = cA2 V(X)

V(X+Y) = V(X) + V(Y) + 2(E(XY) - E(X)E(Y))

Cov(X, Y) = Cov(Y, X)

Cov(aX, bY) = ab Cov(X, Y)

Cov(X+Y, Z) = Cov(X, Z) + Cov(Y, 2)

EXSYIII, Cov(X, Y)=0

— N\ N0 N0 NC NC NC NC N\ MY

) N U )

[E(X) = E(X1) + E(X2) + ... + E(Xn) = np

[V(X) =np(1-p)

[P(X:k) = Ak enf-A} / k!

[E(X) =A

[V(X) =A

rExample: Suppose that the probability
that a coin comes up tails is p. This coin is
flipped repeatedly until it comes up tails.
What is the expected number of flips until
this coin comes up tails? HZIEX... TMABR
| REM

-
Definition: A random variable X has a

geometric distribution with parameter p if
p(X=k)=(1-p)rfk-Tp fork=1,2, 3, .. where
e is a real numberwithO<p<1.

J

- [Hypergeometric distribution X~ H(N,M,n) ] { [P(X = k) = C(M, k) C(N-M, n-k) / C(n, N)

)

If X is a random variable that takes only
nonnegative values, then for any value a > 0

Pix2a) < P

Proof 2

’
K

Let X be a random variable on a sample
space S with probability function p. If ris a
positive real number, then

p(1X(s) — EX)| > r) < V(X)/r?

L

rChebyshev's inequality provides a universal
guarantee for any probability distribution,
stating that a certain fraction of its values
must be within a certain distance of the
mean. Specifically, it guarantees that no
more than 1/k? of the data can be more
than k standard deviations away from the

~

Lmean. J

e )
Chebyshev's Law (Lt E R AEER)

\ J

e : )
Bernoulli's Law ({BZFAKEE 2)

\ J

e N )
Khinchin's Law (FEERAREER)

q J

N

r
F—EFHET, EMEREFHTRMIES D MAN—
LI REN R ERNMEID T, SHnRoARN, 1
AR M IEZS 7
Theorem 2.2 (Central Limit Theorem) Let X1,X>,... be a sequence of indepen-

dent, identically distributed random variables, each with mean p and variance o2.
Then the distribution of

X1+ X0+ +Xp—npu
on/n

tends to the standard normal as # — oo. That is,

X1+Xo+--+Xp—np } 1 fﬂ _x2)2
P ————(—=——— <a; &> —F— e /2 dx
{ on - V2r oo

asn — oQ.

4 N
Posterior ([5i)

P(AIB)

p
Likelihood ({{#X)
P(B|A)

\

Prior (5t30HEER)
| P(A)

rEvidence (IEHE)

P(B)

{ [%X'—ﬁ YHBIZ, V(X+Y) =V(X) + V(Y) )

Proof1
Let A be the event
A={seS[|X(s)-EX)| =}
‘What we want to prove is that p(A) < V(X)/ 2. Note that

< V0 = Y (X(s) ~ EQOYp(s)
SES

= D (X() — EQ)Yp(s) + Y (X() — EX))’p(s)-
SEA SEA

The second sum in this expression is nonnegative, because each of its summands is nonnegative.
Also, because for each element s in A, (X(s) — E(X))? > r?, the first sum in this expression is
at least Y., rp(s). Hence, V(X) > ¥, r*p(s) = ’p(A). It follows that V(X)/r* > p(A), so
p(A) < V(X)/r?, completing the proof.

rx_1, X 2, .. X_niBEIMIZ, EX_i), VIX_i) FE, VX _i\le

C, M \bar{X}\to E(\bar{X})

_ J
( )
n_A AnRAZRFLIRPALERRE, PA)=p, M n_A/n

\to p

_ J
( )
X_1,X_2,.., X_ntBEMIIBIRME—2%, EX_) ZFE, N
k\ba r{X} \to E(\bar{X}) )

~* "~

~

p
The probability of our hypothesis A, given

the evidence B.
\ J

~

p
The probability of seeing the evidence B, if
| our hypothesis A is true.

( )

Our initial belief in the hypothesis A,
kbefore seeing any evidence.

7 \
The overall probability of observing the

evidence B.
\




Mathematics

(Baﬂc

(Limits and Continuity

r Calculus <

(Derivatives

(Seﬁes

- (Eigenvalues and Eigenvectors )

(Matrix Operations ) <

- Linear Algebra &

(Domaln

N/

(Rational / Irrational

)4

N/

(Real/lmaginary

(Range

(leit (1RIR)

(Contlnuous

(Sq ueeze Theorem (KETEIE)

-

{ (f‘(a = lim_{h->0} (f(a+h) - f(a)) / h

leferentiable (AT / |I1)

) { (Taylor Formula

(Core idea: local approximation )

AX = AX

Geometric Intuition
Eigenvectors are the directions that
remain unchanged (up to scaling) by the

the scaling factors in those directions.

linear transformation A. Eigenvalues (A) are

r | Transpose

Determinant

{ (det(A)=|’|)\i )

— N\ N\ C N N\

Inverse / Invertible

~— ) e ——— N\ J

(Rank

number of linearly independent rows (or
columns) it contains, which represents the

dimension of the vector space spanned by
the matrix.

tr(A)=2Ai

\

)
A
(4 A
N\ N . )

The rank of a matrix is the maximum ]
-

= (Singular Value Decomposition (SVD))

= (Trace

) < In linear algebra, the most common and

significant type of matrix transformation is

L | a similarity transformation. This
transformation takes a matrix A and
transforms it into P'AP, where P is any

| invertible matrix.

(A = UZVAT

Any linear transformation can be broken

down into a sequence of three operations:

a rotation (VAT ), a scaling along the
coordinate axes (), and another rotation
(V).




